Mathematicians from HSE University–Nizhny Novgorod Solve 57-Year-Old Problem

In 1968, American mathematician Paul Chernoff proposed a theorem that allows for the approximate calculation of operator semigroups, complex but useful mathematical constructions that describe how the states of multiparticle systems change over time. The method is based on a sequence of approximations—steps which make the result increasingly accurate. But until now it was unclear how quickly these steps lead to the result and what exactly influences this speed. This problem has been fully solved for the first time by mathematicians Oleg Galkin and Ivan Remizov from the Nizhny Novgorod campus of HSE University. Their work paves the way for more reliable calculations in various fields of science. The results were published in the Israel Journal of Mathematics (Q1).
Many mathematical and theoretical physics problems require precise calculations of complex specific values, such as how quickly a cup of coffee cools down, how heat spreads in an engine, or how a quantum particle behaves. Research into quantum computers and quantum information transmission channels, random processes, and many other areas important to modern science involve calculating semigroups of operators. Such calculations are based on the exponent, one of the most important mathematical functions expressed by the number e (approximately equal to 2.718) raised to a power.
However, in the case of very complex systems described by so-called unbounded operators, standard methods for calculating the exponent (semigroup of operators) stop working. In 1968, American mathematician Paul Chernoff proposed an elegant solution to this problem: a special mathematical approach now known as Chernoff approximations of semigroups of operators. This makes it possible to approximately calculate the required values of the exponent by consistently building more and more precise mathematical constructions.
Chernoff's method guaranteed that successive approximations would eventually lead to the correct answer, but did not show how quickly this would happen. Simply put, it was unclear how many steps were needed to achieve the desired accuracy. It was this uncertainty that prevented the method from being used in practice.
Mathematicians Oleg Galkin and Ivan Remizov from HSE University–Nizhny Novgorod solved this problem, which scientists around the world had struggled with for many decades. They managed to obtain general estimates of the convergence rate—that is, to describe how quickly the approximate values converge to the exact result depending on the selected parameters.
Ivan Remizov
‘This situation can be compared to a culinary recipe. Paul Chernoff indicated the necessary stages, but did not explain how exactly to select the optimal "ingredients"—auxiliary Chernoff functions that provide the best result. Therefore, it was impossible to accurately predict how quickly the “dish” would be ready. We have refined this recipe and determined which ingredients are best suited to make the method faster and more efficient,’ explains Ivan Remizov, senior researcher at the HSE International Laboratory of Dynamical Systems and Applications, senior researcher at the RAS Dobrushin Laboratory of the A.A. Kharkevich Institute for Information Transmission Problems, and co-author of the study.
Galkin and Remizov showed that Chernoff’s method can work much faster if the auxiliary Chernoff functions are chosen correctly. With the right selection of functions, the approximation becomes much more accurate even at the early stages of calculations. The mathematicians also proved a rigorous theorem: if the Chernoff function and the semigroup being approximated have the same Taylor polynomial of order k, and the Chernoff function deviates little from its Taylor polynomial, then the difference between the approximate and exact values decreases at least proportionally to 1/n^k, where n is the step number and k is any natural number reflecting the quality of the selected functions.
Oleg Galkin
Continuing the recipe analogy, the scientists have managed not only to clarify which ingredients work best, but also to accurately estimate how much faster the ‘dish’ is prepared if these optimal products are used. The formula derived by the mathematicians based on this analogy works like this: at each step of preparation, the result becomes more accurate, and the error decreases proportionally to one divided by n to the power of k, where n denotes the step number in the recipe, and k depends on the quality of the selected ingredients. The higher the value of k, the faster the desired result will be achieved.
Thus, Oleg Galkin and Ivan Remizov managed to solve a problem that had remained open for more than half a century. In addition to bringing clarity, their achievement could open up prospects and generate new problems to be solved. Although the study is theoretical in nature, its significance goes beyond pure mathematics. Such results often serve as the basis for developing new numerical methods in quantum mechanics, heat transfer, control theory, and other sciences where complex processes are modeled.
The theorem proposed by Oleg Galkin and Ivan Remizov was presented at the international scientific conference ‘Theory of Functions and Its Applications’ on July 5, 2025.
The work was supported by the HSE Fundamental Research Programme and the HSE International Laboratory of Dynamical Systems and Applications, grant No. 23-71-30008 of the Russian Science Foundation ‘Dissipative Dynamics of Infinite-Dimensional and Finite-Dimensional Systems, Development of Mathematical Models of Mechanical and Hydrodynamic Processes.’
See also:
HSE Scientists Optimise Training of Generative Flow Networks
Researchers at the HSE Faculty of Computer Science have optimised the training method for generative flow neural networks to handle unstructured tasks, which could make the search for new drugs more efficient. The results of their work were presented at ICLR 2025, one of the world’s leading conferences on machine learning. The paper is available at Arxiv.org.
Physicists Propose New Mechanism to Enhance Superconductivity with 'Quantum Glue'
A team of researchers, including scientists from HSE MIEM, has demonstrated that defects in a material can enhance, rather than hinder, superconductivity. This occurs through interaction between defective and cleaner regions, which creates a 'quantum glue'—a uniform component that binds distinct superconducting regions into a single network. Calculations confirm that this mechanism could aid in developing superconductors that operate at higher temperatures. The study has been published in Communications Physics.
Neural Network Trained to Predict Crises in Russian Stock Market
Economists from HSE University have developed a neural network model that can predict the onset of a short-term stock market crisis with over 83% accuracy, one day in advance. The model performs well even on complex, imbalanced data and incorporates not only economic indicators but also investor sentiment. The paper by Tamara Teplova, Maksim Fayzulin, and Aleksei Kurkin from the Centre for Financial Research and Data Analytics at the HSE Faculty of Economic Sciences has been published in Socio-Economic Planning Sciences.
Mistakes That Explain Everything: Scientists Discuss the Future of Psycholinguistics
Today, global linguistics is undergoing a ‘multilingual revolution.’ The era of English-language dominance in the cognitive sciences is drawing to a close as researchers increasingly turn their attention to the diversity of world languages. Moreover, multilingualism is shifting from an exotic phenomenon to the norm—a change that is transforming our understanding of human cognitive abilities. The future of experimental linguistics was the focus of a recent discussion at HSE University.
Larger Groups of Students Use AI More Effectively in Learning
Researchers at the Institute of Education and the Faculty of Economic Sciences at HSE University have studied what factors determine the success of student group projects when they are completed with the help of artificial intelligence (AI). Their findings suggest that, in addition to the knowledge level of the team members, the size of the group also plays a significant role—the larger it is, the more efficient the process becomes. The study was published in Innovations in Education and Teaching International.
New Models for Studying Diseases: From Petri Dishes to Organs-on-a-Chip
Biologists from HSE University, in collaboration with researchers from the Kulakov National Medical Research Centre for Obstetrics, Gynecology, and Perinatology, have used advanced microfluidic technologies to study preeclampsia—one of the most dangerous pregnancy complications, posing serious risks to the life and health of both mother and child. In a paper published in BioChip Journal, the researchers review modern cellular models—including advanced placenta-on-a-chip technologies—that offer deeper insights into the mechanisms of the disorder and support the development of effective treatments.
Using Two Cryptocurrencies Enhances Volatility Forecasting
Researchers from the HSE Faculty of Economic Sciences have found that Bitcoin price volatility can be effectively predicted using Ethereum, the second-most popular cryptocurrency. Incorporating Ethereum into a predictive model reduces the forecast error to 23%, outperforming neural networks and other complex algorithms. The article has been published in Applied Econometrics.
Administrative Staff Are Crucial to University Efficiency—But Only in Teaching-Oriented Institutions
An international team of researchers, including scholars from HSE University, has analysed how the number of non-academic staff affects a university’s performance. The study found that the outcome depends on the institution’s profile: in research universities, the share of administrative and support staff has no effect on efficiency, whereas in teaching-oriented universities, there is a positive correlation. The findings have been published in Applied Economics.
Advancing Personalised Therapy for More Effective Cancer Treatment
Researchers from the International Laboratory of Microphysiological Systems at HSE University's Faculty of Biology and Biotechnology are developing methods to reduce tumour cell resistance to drugs and to create more effective, personalised cancer treatments. In this interview with the HSE News Service, Diana Maltseva, Head of the Laboratory, talks about their work.
Physicists at HSE University Reveal How Vortices Behave in Two-Dimensional Turbulence
Researchers from the Landau Institute for Theoretical Physics of the Russian Academy of Sciences and the HSE University's Faculty of Physics have discovered how external forces affect the behaviour of turbulent flows. The scientists showed that even a small external torque can stabilise the system and extend the lifetime of large vortices. These findings may improve the accuracy of models of atmospheric and oceanic circulation. The paper has been published in Physics of Fluids.


