'We Are Creating the Medicine of the Future'

Dr Gerwin Schalk is a professor at Fudan University in Shanghai and a partner of the HSE Centre for Language and Brain within the framework of the strategic project 'Human Brain Resilience.' Dr Schalk is known as the creator of BCI2000, a non-commercial general-purpose brain-computer interface system. In this interview, he discusses modern neural interfaces, methods for post-stroke rehabilitation, a novel approach to neurosurgery, and shares his vision for the future of neurotechnology.
Brain-Computer Interfaces
Neural interfaces are technologies that establish a direct connection between the brain and a computer. Special devices, such as electrodes placed on the scalp, on the brain's surface, or within the brain, are used to detect brain signals. These signals are then processed and converted into meaningful information, which can be transmitted to electronic devices such as computers, prosthetics, or speech synthesisers.
Just as smartwatches or other wearable devices give us useful information about our body, such as heart rate or the number of our steps, neurotechnology can provide important information about the health of our brain or can even help to improve it. In contrast to wearable devices, neurotechnologies are currently still used almost exclusively in laboratory settings and in limited testing in the clinic. For example, clinicians use them for rehabilitating patients after strokes or brain injuries, restoring speech functions, and performing neurosurgical procedures.
I have spent my career understanding the neural basis of neurotechnologies and on facilitating their transition into wider areas of research and the clinic. Indeed, my BCI2000 software is now the most widely used software for studying neurotechnologies. My team and I have been developing this software for nearly 25 years, and there is still quite some room for further improvements. Essentially, BCI2000 is similar to Linux or Android systems since it can be used across various applications.
A New Approach to Rehabilitation
Many post-stroke patients experience a loss of motor or speech functions. Conventional rehabilitation methods involve regular therapy sessions at specialised clinics. Patients are asked to repeat specific words or phrases multiple times and perform various exercises.
However, this approach has several limitations: therapy sessions can only take place at a facility under professional supervision. It can be inconvenient for patients, complicated, and expensive. Additionally, once patients return home, they often discontinue therapy sessions and miss the opportunity for a full recovery.

Together with HSE, we have been developing a new rehabilitation system that uses neurotechnologies. It is designed to aid language recovery in patients with aphasia who have lost the ability to speak coherently and express their thoughts following illness or injury. Instead of repeating phrases, patients are invited to play a game. Special sensors are attached to the head to monitor brain signals. The person sees a picture on the screen and hears several words, one of which corresponds to the image. The brain must identify the correct word. If the system can detect from the brain signal that the person identified the correct word, the person receives a reward such as a smiley face. In this way, even individuals who have lost the physical ability to speak can engage in this exercise.
We now have a prototype of this system. Our next goal is to make it accessible and understandable to people without specialised knowledge. The system should be extremely simple, allowing anyone to use it, including junior medical staff at any hospital. Patients only need to place a special device on their head and begin playing.
Today, neurotechnology for rehabilitation is like a delicate young sprout. To allow it to grow stronger and flourish, we cannot immediately place it in the heart of a dense forest. We must cultivate it separately and only then integrate it into the broader environment. In our case, that means the healthcare system. This is a crucial and challenging task that requires time, expertise, effort, and patience. We are gradually creating a new model of medicine that will not replace but complement the existing one, which is primarily based on pharmacological solutions.
Invasive Neurotechnologies: A Revolution in Neurosurgery
Another important application of neurotechnologies is functional brain mapping. In brain surgery, eg when removing tumours, it is critically important to identify areas of the brain that control movement, language, and other functions. The surgeon does not always see the tumour’s boundaries, as it may not visually differ from the surrounding tissue. Meanwhile, the cost of an error in neurosurgery is extremely high: if too much tissue is removed, the patient could lose the ability to walk or speak.
Conventional brain mapping methods involve electrical stimulation of the brain. A clinician applies an electrical current to a specific area of the patient's brain, and if the patient's arm twitches or they stop speaking, it indicates that the area is responsible for motor or language functions, respectively. This process requires significant patient involvement directly on the operating table. Additionally, electrical stimulation can sometimes trigger seizures.

We have developed a simpler and safer method that analyses brain signals while the patient performs simple tasks. We use electrocorticography, which involves placing electrodes directly on the surface of the brain. The patient performs several tasks simultaneously, such as speaking, sticking out their tongue, and moving their hand. We monitor brain signals, and if we detect an increase in activity in a specific area, we can infer that this region is involved in the corresponding function. Brain mapping requires a personalised approach. While everyone's brain is generally structured similarly, functions are located in slightly different areas in different people, and tumours can further distort these areas. Therefore, for the surgeon to operate with precision, it is essential to map each individual functional area of the brain.
Neurotechnologies of the Future
There is extensive media coverage of neuroprostheses—electronic implants that help people regain the ability to walk, see, or hear. Last year, my colleagues and I demonstrated that we could read brain signals and convert them into natural-sounding speech. We were able to recreate a Pink Floyd song by analysing neuronal activity. This work contributes to neuroprostheses that can restore speech function. While all of this may seem ambitious, futuristic, and reminiscent of science fiction novels, we will initially only be able to help some people.
In the case of neuroprostheses, we restore a lost ability in a patient—whether it's the ability to walk, see, hear, or speak—without altering anything in the brain itself. In the case of rehabilitation using neurotechnologies, we aim to reorient the functioning preserved part of the brain to take over functions that were previously controlled by other areas. These changes may be less spectacular, but they are much deeper and more complex, with potential and benefits that are far greater.

To pursue these exciting goals, we don't necessarily need to invent completely new technologies, but we certainly need to continue to learn how to configure the existing ones correctly and effectively. It is important to integrate these technologies into clinical practice, train clinicians, and earn the trust of patients. It's a long journey ahead, but we are already at the start of a new revolution in medicine.
Translating neurotechnologies into practical devices for monitoring health in everyday life is one of our primary goals. They should become a valuable tool for monitoring personal health, and should be accessible to everyone, not just to clinicians and researchers. For example, a person may wear a headband while sleeping and receive a report in the morning about the quality of their sleep, the state of their nervous system, and stress levels, along with recommendations on how to improve their lifestyle—such as reducing alcohol consumption, going to bed earlier, or exercising more. If we can 'translate' brain signals into meaningful information, it will mark a significant step forward in preventive medicine.
See also:
HSE AI Research Centre Simplifies Particle Physics Experiments
Scientists at the HSE AI Research Centre have developed a novel approach to determining robustness in deep learning models. Their method works eight times faster than an exhaustive model search and significantly reduces the need for manual verification. It can be applied to particle physics problems using neural networks of various architectures. The study has been published in IEEE Access.
Scientists Show That Peer Influence Can Be as Effective as Expert Advice
Eating habits can be shaped not only by the authority of medical experts but also through ordinary conversations among friends. Researchers at HSE University have shown that advice from peers to reduce sugar consumption is just as effective as advice from experts. The study's findings have been published in Frontiers in Nutrition.
HSE University Develops Tool for Assessing Text Complexity in Low-Resource Languages
Researchers at the HSE Centre for Language and Brain have developed a tool for assessing text complexity in low-resource languages. The first version supports several of Russia’s minority languages, including Adyghe, Bashkir, Buryat, Tatar, Ossetian, and Udmurt. This is the first tool of its kind designed specifically for these languages, taking into account their unique morphological and lexical features.
HSE Scientists Uncover How Authoritativeness Shapes Trust
Researchers at the HSE Institute for Cognitive Neuroscience have studied how the brain responds to audio deepfakes—realistic fake speech recordings created using AI. The study shows that people tend to trust the current opinion of an authoritative speaker even when new statements contradict the speaker’s previous position. This effect also occurs when the statement conflicts with the listener’s internal attitudes. The research has been published in the journal NeuroImage.
Language Mapping in the Operating Room: HSE Neurolinguists Assist Surgeons in Complex Brain Surgery
Researchers from the HSE Center for Language and Brain took part in brain surgery on a patient who had been seriously wounded in the SMO. A shell fragment approximately five centimetres long entered through the eye socket, penetrated the cranial cavity, and became lodged in the brain, piercing the temporal lobe responsible for language. Surgeons at the Burdenko Main Military Clinical Hospital removed the foreign object while the patient remained conscious. During the operation, neurolinguists conducted language tests to ensure that language function was preserved.
AI Overestimates How Smart People Are, According to HSE Economists
Scientists at HSE University have found that current AI models, including ChatGPT and Claude, tend to overestimate the rationality of their human opponents—whether first-year undergraduate students or experienced scientists—in strategic thinking games, such as the Keynesian beauty contest. While these models attempt to predict human behaviour, they often end up playing 'too smart' and losing because they assume a higher level of logic in people than is actually present. The study has been published in the Journal of Economic Behavior & Organization.
Scientists Discover One of the Longest-Lasting Cases of COVID-19
An international team, including researchers from HSE University, examined an unusual SARS-CoV-2 sample obtained from an HIV-positive patient. Genetic analysis revealed multiple mutations and showed that the virus had been evolving inside the patient’s body for two years. This finding supports the theory that the virus can persist in individuals for years, gradually accumulate mutations, and eventually spill back into the population. The study's findings have been published in Frontiers in Cellular and Infection Microbiology.
HSE Scientists Use MEG for Precise Language Mapping in the Brain
Scientists at the HSE Centre for Language and Brain have demonstrated a more accurate way to identify the boundaries of language regions in the brain. They used magnetoencephalography (MEG) together with a sentence-completion task, which activates language areas and reveals their functioning in real time. This approach can help clinicians plan surgeries more effectively and improve diagnostic accuracy in cases where fMRI is not the optimal method. The study has been published in the European Journal of Neuroscience.
For the First Time, Linguists Describe the History of Russian Sign Language Interpreter Training
A team of researchers from Russia and the United Kingdom has, for the first time, provided a detailed account of the emergence and evolution of the Russian Sign Language (RSL) interpreter training system. This large-scale study spans from the 19th century to the present day, revealing both the achievements and challenges faced by the professional community. Results have been published in The Routledge Handbook of Sign Language Translation and Interpreting.
HSE Scientists Develop DeepGQ: AI-based 'Google Maps' for G-Quadruplexes
Researchers at the HSE AI Research Centre have developed an AI model that opens up new possibilities for the diagnosis and treatment of serious diseases, including brain cancer and neurodegenerative disorders. Using artificial intelligence, the team studied G-quadruplexes—structures that play a crucial role in cellular function and in the development of organs and tissues. The findings have been published in Scientific Reports.


