Physicists Propose New Mechanism to Enhance Superconductivity with 'Quantum Glue'

A team of researchers, including scientists from HSE MIEM, has demonstrated that defects in a material can enhance, rather than hinder, superconductivity. This occurs through interaction between defective and cleaner regions, which creates a 'quantum glue'—a uniform component that binds distinct superconducting regions into a single network. Calculations confirm that this mechanism could aid in developing superconductors that operate at higher temperatures. The study has been published in Communications Physics.
Superconductivity is a state in which electric current flows through a material without resistance, losing no energy as heat. In ordinary conductors, electrons move independently and lose energy through collisions with atoms and impurities. In superconductors, however, electrons form Cooper pairs and move in unison, enabling current to flow without loss. Thanks to this property, superconductors are used to create powerful magnets, medical MRI scanners, and particle accelerators, and they also hold promise for developing new types of computing devices.
The challenge is that superconductivity usually occurs only at very low temperatures and is easily disrupted by impurities and defects in the material. These defects fragment superconductivity into isolated regions that fail to connect. Paradoxically, however, such disordered areas can also support the formation of Cooper pairs at higher temperatures. This creates a contradiction: structural disorder can locally enhance superconductivity, yet at the same time prevents it from spreading throughout the entire sample.
A team of researchers from HSE University, the Moscow Centre for Advanced Studies, and the Federal University of Pernambuco has shown that this challenge can be addressed by combining defective ('dirty') and clean subsystems. The team studied a two-band model in which one subsystem is highly disordered: superconductivity emerges there at higher temperatures, but only in isolated regions. The other subsystem remains clean, where superconductivity is weaker but provides connectivity. When the two are combined, a component arises that acts as a 'quantum glue,' linking the isolated islands and enabling current to flow through the entire sample at elevated temperatures.
Alexei Vagov
'Our calculations show that when defective and clean regions are properly connected, the material exhibits both a higher superconducting transition temperature and the ability to carry current without resistance. While disorder usually destroys this effect, we observed the opposite: defects can serve as a resource for creating more stable superconductors that operate at higher temperatures,' explains Alexey Vagov, Professor at HSE MIEM and co-author of the study.

Calculations confirm that this approach is effective for various types of disorder, ranging from random impurities to specially engineered superlattices. It is particularly promising for multilayer materials, where clean and disordered layers can be alternated; for compounds based on magnesium and boron (MgB₂), in which one electronic band enhances local superconductivity while the other facilitates current flow; and for materials with flat electronic bands, where electron pairing occurs more readily. Graphene- and graphite-based systems are also considered promising, as regular superstructures can form that alter electronic properties and promote stronger superconductivity. In the future, this could enable the development of materials in which defects and impurities do not hinder, but rather enhance, superconductivity.
The study was conducted with support from the Russian Science Foundation (Project 075-15-2025-010) and the HSE Basic Research Programme, using the university's HPC cluster.
See also:
HSE University Develops Tool for Assessing Text Complexity in Low-Resource Languages
Researchers at the HSE Centre for Language and Brain have developed a tool for assessing text complexity in low-resource languages. The first version supports several of Russia’s minority languages, including Adyghe, Bashkir, Buryat, Tatar, Ossetian, and Udmurt. This is the first tool of its kind designed specifically for these languages, taking into account their unique morphological and lexical features.
HSE Scientists Uncover How Authoritativeness Shapes Trust
Researchers at the HSE Institute for Cognitive Neuroscience have studied how the brain responds to audio deepfakes—realistic fake speech recordings created using AI. The study shows that people tend to trust the current opinion of an authoritative speaker even when new statements contradict the speaker’s previous position. This effect also occurs when the statement conflicts with the listener’s internal attitudes. The research has been published in the journal NeuroImage.
Language Mapping in the Operating Room: HSE Neurolinguists Assist Surgeons in Complex Brain Surgery
Researchers from the HSE Center for Language and Brain took part in brain surgery on a patient who had been seriously wounded in the SMO. A shell fragment approximately five centimetres long entered through the eye socket, penetrated the cranial cavity, and became lodged in the brain, piercing the temporal lobe responsible for language. Surgeons at the Burdenko Main Military Clinical Hospital removed the foreign object while the patient remained conscious. During the operation, neurolinguists conducted language tests to ensure that language function was preserved.
AI Overestimates How Smart People Are, According to HSE Economists
Scientists at HSE University have found that current AI models, including ChatGPT and Claude, tend to overestimate the rationality of their human opponents—whether first-year undergraduate students or experienced scientists—in strategic thinking games, such as the Keynesian beauty contest. While these models attempt to predict human behaviour, they often end up playing 'too smart' and losing because they assume a higher level of logic in people than is actually present. The study has been published in the Journal of Economic Behavior & Organization.
HSE University and InfoWatch Group Sign Cooperation Agreement
HSE University and the InfoWatch Group of Companies marked the start of a new stage in their collaboration with the signing of a new agreement. The partnership aims to develop educational programmes and strengthen the practical training of specialists for the digital economy. The parties will cooperate in developing and reviewing curricula, and experts from InfoWatch will be involved in teaching and mentoring IT and information security specialists at HSE University.
Scientists Discover One of the Longest-Lasting Cases of COVID-19
An international team, including researchers from HSE University, examined an unusual SARS-CoV-2 sample obtained from an HIV-positive patient. Genetic analysis revealed multiple mutations and showed that the virus had been evolving inside the patient’s body for two years. This finding supports the theory that the virus can persist in individuals for years, gradually accumulate mutations, and eventually spill back into the population. The study's findings have been published in Frontiers in Cellular and Infection Microbiology.
HSE Scientists Use MEG for Precise Language Mapping in the Brain
Scientists at the HSE Centre for Language and Brain have demonstrated a more accurate way to identify the boundaries of language regions in the brain. They used magnetoencephalography (MEG) together with a sentence-completion task, which activates language areas and reveals their functioning in real time. This approach can help clinicians plan surgeries more effectively and improve diagnostic accuracy in cases where fMRI is not the optimal method. The study has been published in the European Journal of Neuroscience.
For the First Time, Linguists Describe the History of Russian Sign Language Interpreter Training
A team of researchers from Russia and the United Kingdom has, for the first time, provided a detailed account of the emergence and evolution of the Russian Sign Language (RSL) interpreter training system. This large-scale study spans from the 19th century to the present day, revealing both the achievements and challenges faced by the professional community. Results have been published in The Routledge Handbook of Sign Language Translation and Interpreting.
HSE Scientists Develop DeepGQ: AI-based 'Google Maps' for G-Quadruplexes
Researchers at the HSE AI Research Centre have developed an AI model that opens up new possibilities for the diagnosis and treatment of serious diseases, including brain cancer and neurodegenerative disorders. Using artificial intelligence, the team studied G-quadruplexes—structures that play a crucial role in cellular function and in the development of organs and tissues. The findings have been published in Scientific Reports.
New Catalyst Maintains Effectiveness for 12 Hours
An international team including researchers from HSE MIEM has developed a catalyst that enables fast and low-cost hydrogen production from water. To achieve this, the scientists synthesised nanoparticles of a complex oxide containing six metals and anchored them onto various substrates. The catalyst supported on reduced graphene layers proved to be nearly three times more efficient than the same oxide without a substrate. This development could significantly reduce the cost of hydrogen production and accelerate the transition to green energy. The study has been published in ACS Applied Energy Materials. The work was carried out under a grant from the Russian Science Foundation.


