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Abstract In [Kaytoueet al, 2017 we introduced closed interval pat-
terns in the context of gene expression data mining. Intu-
itively, an interval pattern is a vector of intervals, eaghen-

sion corresponding to a range of values of a given attribute ;
it is closed when composed of the smallest intervals charac-
terizing a same set of objects.

In the present paper, we complete and extend this first at-
tempt. Considering numerical data, some general character
istics of equivalence classes remain, e.g. one maximal ele-
ment which is a closed pattern and possibly several genera-
tors which are minimal patterns w.r.t. a subsumption retati
defined on patterns. We show that directly extracting paster
data from numerical is more efficient using pattern struggur
than working on binary data with associated scaling proce-
dures. We also provide a semantics to interval patternsein th
Euclidean space, design and experiment algorithms toaxtra
1 Introduction frequent closed interval patterns and their generators.

The problem of mining patterns in humerical data is usu-
lly referred as quantitative itemset/association rul@-mi
ng [Srikant and Agrawal, 1996 Generally, an appropriate

We investigate the problem of mining numerical
data with Formal Concept Analysis. The usual way
is to use a scaling procedure —transforming numer-
ical attributes into binary ones— leading either to
a loss of information or of efficiency, in particu-
lar w.r.t. the volume of extracted patterns. By con-
trast, we propose to directly work on numerical data
in a more precise and efficient way. For that, the
notions of closed patterns, generators and equiva-
lent classes are revisited in the humerical context.
Moreover, two algorithms are proposed and tested
in an evaluation involving real-world data, showing
the quality of the present approach.

In this paper, we investigate the problem of mining numérica
data. This problem arises in many practical situations, e.
analysis of gene and transcriptomic data in biology, sareh . — - a T F
acteristics and land occupation in agronomy, demographig'Scret'zat.'on splits attr.|bute ranges into mterv_als Mmaz-

data in economics, temperatures in climate analysis, etc. W19 SOme interest functions, e.g. support, confidence. How-
introduce an original framework for mining numerical data EVE'. NONE of these works covers the notion of equivalence

based on advances in itemset mining and in Formal Conce&asses’ closed patterns, and generators, and this is dne of

Analysis (FCA,[Ganter and Wille, 1999, respectively con- org;}nalltly of tfhtehpresent paper.f I Eirst ntrod
densed representations of itemsets and pattern strudgtures € plan of the paper IS as 101lows. Firstly, we introduce
FCA [Ganter and Kuznetsov, 2001The mining of frequent the problem of mining numerical data and interval patterns.

itemsets in binary data, considering a set of objects and a sg"€": we recall tbhe b?sms ct>f FC?ha?d mterordlnaltscallng.
of associated attributes or items, is studied for a long time € POse a number of queslions that we propose o answer

and usually involves the so-called “pattern flooding” pestl ~ USINg our framework of interval pattern structures dealing
[Bastideet al, 2000. A way of dealing with pattern flooding With numerical data. We then detail two original algorithms
is to search for equivalence classes of itemsets, i.e. @mms for extracting closed interval patterns and their genesato
shared by the same set of objects (or having the same imag%—?,hese algorithms are evaluated in the last section on real-
For an equivalence class, there is one maximal itemsetfwhicvor'd data. Finally, we end the paper in discussing related
corresponds to a “closed set”, and possibly several minimaiﬁork and giving perspectives to the_ present researc_h vv_ork.
elements corresponding to “generators” (or “key item3ets” * s a complement, an extended version of this paper is given

From these elements, families of association rules canbe el [Kaytoueet al, 2010, providing algorithms pseudo-code

tracted. These itemsets are also related to FCA , where a co nd a Ionger_ qllsqussmn on the usefglness of |ntgrval pat-

cept lattice is built from a binary context and where formal ermns in classification problems and privacy preserving-dat

concepts are closed sets of objects and attributes. mining.
The present work is rooted both in FCA and pattern min- N

ing with the objective of extracting interval patterns froon 2 Problem definition

merical data. Our approach is based on “pattern structuredVe propose a definition of interval patterns for numerical

where complex descriptions can be associated with objectslata. Intuitively, each object of a numerical dataset corre


http://arxiv.org/abs/1111.5689v1

sponds to a vector of numbers, where each dimension stan& Interval patterns in FCA
for an attribute. Accordingly, an interval pattern is a weaf . . i . o
intervals, and each dimension describes the range of a aumdieanter and Wille, 1999define a discretization procedure,

ical attribute. We only consider finite intervals and that et calledinterordinal scaling transforming numerical data into
of attributes/dimensions is assumed to bed (canonicatly) o Pinary data that encodes any interval of values from a numeri
dered. cal dataset. We recall here the basics on FCA and interdrdina

_ _ o scaling.
Numerical dataset. A numerical dataset is given by a set of
objectsG, a set of numerical attributels/, where the range 3.1 Formal concept analysis

of m € M is afinite set notedV,,,. m(g) = w means that )
is the value of attribute: for objectg. FCA starts with a formal contextG, N,I) where G de-

notes a set of objectsy a set of attributes, or items, and

Ll ;’“ | ;”2 | ;"3 | I C G x N a binary relation betwee and N. The
g; 6 8 4 statement{g,n) € I, or gIn, means: “the objecy has at-
g3 f{ g g tributen”. Two operatory-)’ define a Galois connection be-
s |s |s tween the powerset§3(G), C) and(P(N), <), with A C G

andB C N: A = {n € N | VYg € A : gIn} and
Table 1: A numerical dataset. B'={g € G |Vn € B:gln}. Apair(4,B), such that
A’ = BandB’ = A, is called aformal) conceptwhile A is
called theextent and B theintent of the conceptA, B).

From an itemset-mining point of view, concept intents cor-
respond to closed itemsets, sincg’ is a closure operator.
An equivalence class is a set of itemsets with same closure
(and same image). For any sub&etC N, B” is the largest
itemset w.r.t. set inclusion in its equivalence class. Qual
generators are the smallest itemsets w.r.t. set inclusi@mi
equivalence class. Precisely,C N is closed iffAiC such as
Running exampleTable[d is a numerical dataset with objects B C C with C' = B’ ; B C N is a generator iffiC C B
inG = {g1,...,g5}, attributes inM = {my,my,m3}. The WwithC’ = B’.
range ofm; is W,,,, = {4,5,6}, and we haven;(g;) = 5.

Here, we do not consider either missing values or multiple3.2 Interordinal scaling
values for an attribute([5, 6], [7, 8], [4, 6]) is an interval pat-
tern in Tabld 1, with imagé€g:, g2, g5} and suppors.

Interval pattern and support. Inanumerical dataset, anin-
terval pattern is a vector of intervals= ([a;, bi])ic(1,.... 113
wherea;, b, € W,,,, and each dimension corresponds to an
attribute following a canonical order on vector dimensjons
and|M| denotes the number of attributes. An objgcis

in the image of an interval pattefu;, b;]);c(1,.... a3 When
m;i(g) € [ai,bi], Vi € {1,...,|M|}. The support ofl, de-
noted bysup(d), is the cardinality of the image of

Given a numerical attribute: with rangeW,,,, Interordinal
Scaling builds a binary table withx |W,,| binary attributes.
Interval pattern search space. Given a set of attributes They are denoted by# < w” and “m > w”, Yw € W,,,, and
M = {mi}icq1,1m)}, the search space of interval patternscalled 1S-items. An objegs has an I1S-item#h < w” (resp.
is the setD of all interval vectors([a;, bi])ie(1...., |y With — “m > w”) iff m(g) < w (resp.m(g) > w). Applying this

ai,b; € Wy,,,. The size of the search space is given by scaling to our example gives Taljlk 2. It is possible to apply
classical mining algorithms to process this table for esting
|D| = H (Wi | X (Wi, | +1))/2 itemsets composed of I1S-items. These itemsets are called IS
ie{1,...,| M|} itemsets in the following.

IS-itemsets can be turned into interval patterns, since an
IS-item gives a constraint on the ranyé,, of an attribute
m. For example, the 1S-itemséin; < 5,m; < 6,m; >
4,ms < 9,mg > 7} corresponds to the interval pattern

The classical problem of “pattern flooding” in data-mining (4. 5, [7,9], [4, 8]). We have here the intervgl, 8] for at-
is even worst for numerical data. Indeed, with three atteisu ~ tributems: [4, 8] covers the whole range of; since no con-
there are only2® = 8 possible itemsets, compared to the 360straint is given fom.
interval patterns in the above example with same number of Therefore, mining interval patterns can be considered with
attributes. A solution widely investigated in itemset-imgn @ scaling of numerical data. However, this scaling produces
for minimizing the effect of pattern flooding relies on con- a very important number of binary attributes compared to the
densed representations including closed itemsets and-gene@riginal ones. Hence, when original data are very large, the
ators[Bastideet al, 200(. By contrast, the analysis of nu- Size of the resulting formal context involves hard computa-
merical datasets can be considered within the formal cdncegions. Accordingly, this raises the following questions:
analysis framework (FCAJGanter and Wille, 1999 which (i) Can we avoid scaling and directly work on numerical
is closely related to itemset-mininfstummeet al, 2004. data instead of searching for IS-itemsets? (ii) Can we adapt
Accordingly, we are interested in adapting the notionsi&-(f  the notions of condensed representations such as closed pat
guent) closed itemsets and their generatorsto intervedpat  terns and generators for numerical data, and efficiently-com
within the FCA framework, and in providing an appropriate pute those patterns? (iii) What would be the semantics that
semantics to these patterns. could be provided to closed patterns and generators?

Example. All possible intervals for m; are in
{[4,4], [5,5],16,6],[4,5],[5,6], [4,6]}. Considering also
attributesm, andms, we haves x 6 x 10 = 360 patterns.
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g1 X X X X X X X X X X X
[p) X X X X X X X X X X X X X
gs X X X X X X X X X X X X X
ga X X X X X X X X X X X X X
gs X X X X X X X X X X X X X
Table 2: Interordinally scaled context encoding the nunz¢dataset from Tablg 1.
4 Revisiting numerical pattern mining This means that[5, 6], [7, 8], [4, 8]) is not a closed interval

In this section, we answer those questions. First, we shaty th Pattern, its closure bein@s, 6], [7, 8], [4, 6]).

a closure operator can be defined for interval patterns basefls  gomantics

on their image. Then, we provide interval patterns with an " ) ) ) .
appropriate semantics for defining the notion of equivaéencAn interval patterni is a| M |-dimensional vector of intervals
classes of patterns, closed and generator patterns. Agter d @nd can be represented by a hyper-rectangle (or rectangle fo
cussing why working with interordinal scaling is not aceept short) in Euclidean spad®"'!, whose sides are parallel to the
able thanks to the semantics of interval patterns, we pepogoordinate axes. This geometrical representation prewvade
two efficient algorithms for mining closed interval pattern Semantics for interval patterns. In formal terms, an interp

and generators. Experiments follow in Section 5. tation is given byZ = (RIMI (.)T) whereR!M! is the in-
. terpretation domain, and)” : D — RI™! the interpretation
4.1 A closure operator for interval patterns function. FigurdllL gives four interval pattern represeéatet

We introduce the formalism of pattern structuresin R?, with only attributesn; andm; of our example. The

[Ganter and Kuznetsov, 2001 an extension of formal image ofd; is given by all objecty whose description(g)

contexts for dealing with complex data in FCA. It definesis included in the rectangle associated with i.e. the set

a closure operator for a partially ordered set of object{gi,9s,94,95}. We can interpret the closure operatof’

descriptions called patterns. according to this semantics. The first operatof applies
Formally, letG be a set of objects(D,M) be a semi- to a rectangle and returns the set of objects whose descrip-

lattice of object descriptions, arid: G — D be a mapping: tion is included in this rectangle. The second operéatpt

(G,(D,n),d) is called gpattern structureElements ofD are  applies to a set of objects and returns the smallest reeang|

calledpatterns and are ordered as follows1d = ¢ <= that contains their descriptions, i.e. the convex hull @fith

¢ C d. Intuitively, objects inG have descriptions ifiD, ). corresponding descriptions.

For exampley; in Table 1 has descriptioff5, 5], [7, 7], [6, 6])

where D is the set of all possible interval patterns ordered dy = ([4,5],]5,8])
with M, as made precise below. Consider the two operators s ot d2 = {g1, 93, 94,95}
(.)" defined as follows, withd C G andd € (D, ) . do = ([4,5],4,5])

0 _

AP ={9€GT 9}  A”=Tlead(0) o L
These operators form a Galois connection between d% _ {g;} Y
(B(G),C) and (D,C). ()P is a closure operator, il di = (6,6], [4,8])
meaning that any patterhsuch as! = =1 is closed. , 47 = g}

Interval pattern structures. This general closure operator
can be used for interval patterns. Indeed, interval pattern
can be ordered within a meet-semi-lattice when the infimumg.3  Closed interval patterns and generators

is defined as follows. Let = {a;, bil)ieqs,...,m1y, andd = Now, we can revisit the notion of equivalence classes ofitem
(lei, fil)ieqr,...|n)y two intervals patterns. Theirinfimum is  ge45” a5 introduced ifBastideet al, 2000 an equivalence
given bycnd = ([min(as,ei),maz(bi, fi)])icq1,..,. .M} class of interval patterns is a set of rectangles contaittiag
The ordering relation induced by this definition is: C  same object descriptions (based on all rectangles in thefsea
d < lei, fi] € lai, b], Vi € {1,..., M|} . space as given in Section 2). This enables to define the no-
Consider now a numerical dataset, e.9. Table/1,.C) is  tions of (frequent) closed interval patterns ((F)CIP) aine-(

pattern associated to an objgct G. Then:

Figure 1: Interval patterns in the Euclidean space.

Equivalence class.Two interval patterng andd with same
([5,6],[7,8], [4,8))7 = {g € G|([5,6],[7,8],[4,8]) C 6(g)} image are equivalent, i.e” = ¢~ and we writec = d. = is
={91,92,95} an equivalence relation, i.e. reflexive, transitive and st
{91,092, 95}7 = 8(g1) M (g2) M 6(g3) ric. The set of patterns equivalent to a pattéia denoted by
= ([5,6],[7, 8], 4, 6]) [d] = {c|c = d} and called the equivalence classiof



Closed interval pattern (CIP). A patterndis closed ifthere ¢ = ([4,4],[7,9], [4,5]) andd = ([4,4],[7,9], [4, 6]) and we
does not exist any patteersuch asl C e with d = e. haved C ¢, while & = d", hencec is not an interval pattern

Interval pattern generator (IPG). A patternd is a genera- generator.
tor if there does not exist a patterisuch ag C d with d = e.

Frequent Interval pattern. A patternd is frequentif its im- ~ 4-5  Algorithms

age has a higher cardinality than a given minimal supportVe detail a depth-first enumeration of interval patterrestst
thresholdminSup. ing with the most frequent one. Based on this enumeration,
we design the algorithmdinintChangeandMinintChangeG

We illustrate these definitions with two dimensional in- for extracting respectively frequent closed interval
terval patterns, and their representation in Figure 1, i.e g resp y Ireq pats

considering attributesn, and ms only. ([4,5], [6,8]) = (FCIP) and frequent interval pattern generators (FIPG).

([4,6],[6,8]) withimage{gi, g4 }. ([4,6], [6,8]) isnotclosed  |nterval pattern enumeration. Consider firstly one numer-
as ([4,6],(6,8]) T ([4,5],[6,8]), these two patterns having jcal attribute of the example, say;. The semi-lattice of
same image, i.e.{g1,93,94,95}. ([4,5],[5,8]) is closed. intervals(D,,,, ) is composed of all possible intervals with
([4,6],[5,8]) and([4, 5], [4, 8]) are generators in the class of hounds inl¥,,, and is ordered by the relatién. The unique
the closed interval patterd, = ([4,5],[5,8]) with image  smallest element w.r.tC is the interval with maximal size,
{91,9s,94,95}. Among the four patterns in Figute d; is  je. [4,6] = [min(Wy,), maz(W,,,)] and maximal fre-
the only frequent interval pattern withinSup = 3. ~quency (heres). The basic idea of pattern generation lies
Based on the above semantics, an equivalence class is a g¢fninimal changesor generating the direct subsumers of a
Of. rectang_les containing the same set of ObjeCt deSCI’l:p,tlon given pattern_ For examp|e, two minimal Changes can be ap-
with a (unique) closed pattern corresponding to the sntallesplied to[4, 6]. The first consists in replacing the right bound
rectangle, and one or several generator(s) corresponding {yith the value ofiV,,,, immediately lower thas, i.e. 5, for
the largest rectangle(s). S _ generating the intervad, 5]. The second consists in repeating
These definitions are counter-intuitive w.r.t. itemsel® t the same operation for the left bound, generating the iaterv

smallest rectangles subsume the largest ones. This is duet9 ¢]. Repeating these two operations allows to enumerate
the definition of infimum as set intersection for itemsetsl&hi ]| elements of D,,,,M). A right minimal change is defined

this is convex hull for intervals, which behaves dually as aformally as, giveru, b, v € W,,, a # b, mer([a, b]) = [a, v]

supremum. with v < banddw € W,, st. v < w < b while a left
. . minimal changenci([a, b]) is formally defined dually. Mini-
4.4 |S-itemsets versus interval patterns mal changes give direct next subsumers and implies a mono-

Interordinal scaling allows to build binary data encoditig a tonicity property of frequency, i.e. support 6f, v] is less
interval of values from a numerical dataset. Therefore, on¢han or equal to support ¢4, b]. To avoid generating several
may attempt to mine closed itemsets and generators in thesines the same pattern, a lectic order on changes, or equiva-
data with existing data-mining algorithms. Here we showlently on patterns, is defined. After a right change, one can
why this should be avoided. apply either a right or left change; after a left change one
Local redundancy of 1S-itemsets. Extracting all IS- can apply only a left change. Figurke 2 shows the depth-first
itemsets in our example (from Tablé 2) gives, 487 IS-  traversal (numbered arrows) of diagram(&f,,,,,M). Back-
itemsets. This is surprising since there are at M66tpos-  track occurs when an interval of the forpm, w] is reached
sible interval patterns. In fact, many IS-itemsets arellgca (w € W,,,), or no more change can be applied. Each minimal
redundant. For examplém, < 5} and{m; < 5,m; < 6} change can be interpreted in term of an IS-item. For example,
both correspond to interval pattetpt, 5], [7, 9], [4,8]): the if [a,b] corresponds to the IS-itemséis: > a, m < b} then
constraintn; < 6 is redundant w.r.tm; < 5 on the set of mcr([a,b]) = [a,v] correspondstym > a,m < b,m < v},
valueslV,,,,. Hence there is no 1-1-correspondence betweene. addingm < v to the original IS-itemset. The same ap-
IS-itemsets and interval patterns. It can be shown thaethemlies dually to left minimal changes. These IS-items charac
is a 1-1-correspondence only between closed 1S-itemsdts aterizing minimal changes are drawn on Figlire 2. This figure
CIP [Kaytoueet al, 2017. Later we show that local redun- accordingly represents a prefix-tree, factoring out thereft
dancy of I1S-itemsets makes the computation of closed sefsrocess common prefixes or minimal changes, and avoiding
very hard. redundancy problems inherent in interordinal scaling. The
Global redundancy of 1S-itemset generators.Since IS-  generalization to several attributes is straightforwakdec-
itemset generators are the smallest itemsets, they do ntt order is classically defined on numerical attributes as a
suffer of local redundancy. However, we can remark andexicographic order, e.gn; < ma < mgs. Then changes are
other kind of redundancy, called global redundancy: it hap-applied as explained above for all attributes respectiisgth
pens that two different and incomparable 1S-itemset generaler, e.g. after applying a change to attribtiig, one cannot
tors correspond to two different interval pattern genesto apply a change to attribuie;.
but one subsuming the other. In Table 2, both 1S-itemset&xtracting FCIP with MintintChange. The pattern enu-
Ny = {m1 < 4,m3 < 5}andNs = {m; < 4,m3 < 6} meration starts with the minimal pattern wirtand gener-
have the same imadg;} and are generators, i.e. there doesates its direct subsumers with lower or equal support. The
not exist a smaller itemset of these itemsets with same imageext problem now is that minimal changes do not necessarily
However, their corresponding interval pattern are redpelgt  generate patterns with strictly smaller support. Thersfoe



s B suggested in the binary casdldalders and Goethals, 2005

72 m\ Since generators correspond to largest rectangles, i.e. on
43 P 56 which the fewest minimal changes have been appliedidf
RN AN not a generator, a generatoassociated to its equivalence
class has already been generated, ans discarded. To
. . check the existence af, we look up in an auxiliary data-
Figure 2: Depth-first traversal ofX,, , ). structure storing already extracted FIPG. Precisely, & th

data structure contains a FIP&with same support than

should apply changes until a pattern with different supjsort c@ndidate:, suchthat C ¢, ¢ is discarded, and the algorithm
generated to identify a closed interval pattern (FCIP) bist t Packiracks. Otherwise is declared as a FIPG and stored.
would not be efficient. We adopt the idea of the algorithm'Ve have experimented thdinintChangeGalgorithm with
CloseByOnéKuznetsov and Obiedkov, 20pzbefore apply- two well-known and adapted data structures, a trie and a

ing a minimal change, the closure operatoF™ is applied hashtable.
to the current pattern, allowing to skip all equivalent pats. )
Indeed, the minimal patterw.r.t. C is closed as it is given 5 EXperiments

_ o0 : . . .
by d = G-. Applying a minimal change returns a pattemn we evaluate the performances of the algorithms designed
c with strictly smaller support, sincé = c andd is closed. Java, namelyMinintChange MinintChangeG-hwith

If ¢ is frequent, we can continue, apply the closure operagyjjiary hashtable andinintChangeG-twith auxiliary
tor and next changes in lectic order, allowing to completelyjie  Recalling that closed IS-itemsets and CIP are in 1-
enumerate all FCIP. Since a FCIP may have several different_correspondence, we compare the performance for min-

associated generators, it can be generated several tiiles. Sy interordinal scaled data with the closed-itemset-ngni
following the idea ofCloseByOnga canonicity test can be  gigorithm LCMv2 [Unoetal, 2004. For studying the
defined according to lectic order minimal changes.  glopal redundancy effect of IS-itemset generators, we use
Consider a patterd generated by a change at attribute the generator-mining-algorith@rGrowth [Liu et al, 2004.

m; € M. lts closure is given by=". If ¢ differs from  Both implementations in C++ are available from the authors.
d for some attributes;, € M such asn;, < m;, thend”™  All experiments are conducted on a 2.50Ghz machine with
has already been generated: it is not canonically generate6GB RAM running under Linux 2.6.18-92.e15. We choose
hence the algorithms backtracks. dataset from the Bilkent reposit@rynamely Bolts (BL), Bas-

Example. We start from the minimal patternl — ketball (BK) and Airport (AP), AP being worst case where

([4,6],[7,9],[4,8]). The first minimal change in lectic or- each attribute value is different. ,
der is a right change on attribute;. We obtain pattern First experiments comparklinintChangefor extracting
¢ — ([4,5],[7,9], [4,8]), and obviouslyd = c. However FCIP andLCMv2 for extracting equivalent frequent closed

. . IS-itemsets in Tablgl3. Second experiments consist in ex-
oo _ 0o
Ct (; <[LIL:’C5:]IED[7’9(]1’ [5,8t]),hhencec 'Tcil BOt cIo?eg.tc it IS tracting frequent interval pattern generators (FIPG) with
S ONr(e)wa::Sonside?&en;z:tt:rnaggf;rgd bf/ ?r?iﬁilrial 2rllz;mge o MinintChange-hand MinintChange-t We also extract fre-
left border for attributems, i.e. e — ([4,6],[7,9], 5, 8)). 'Yuent itemset generators (FISG) in corresponding binaey da

after interordinal scaling withGrGrowth for studying the
We haveeP™ = ([4,5],(7,9],[5,8]). e ande™T differ for J ying

) lobal redundancy effect in Tallé 4.
attribute m, but ¢ has been generated from a change ong 4

ms. Sincem; < ms, eP2 is not canonical and has al- Dataset _minSupp__ MinintChange __ LCMv2__[FC1P]
ready been generated (previous example), hence the algo- BL gg‘;/; <2§’2 <165(§J 312’113007
. (] )
rithm backtracks. 25% 1,215 1,060 171,192

. . . 10% 1,821 1,950 268975
Extracting F.IPG with MintintChangeG. We 1 ’ 1,905 2,090 272.223
now adapt MlnlntCha_ngg to extract FIPG, follow- AP 80% 2,505 1,470 346,741
ing a well-known principle in itemset-mining algo- 523(532? ﬁgggg égg,igg ég%gggi
: o , , 373,
rithms [Calders and Goethals, 2405 For any FCIPd, a To 506085 6810125 80504 566
minimal change implies that the support of the resulting 1 517,548 6,813,591 82,467,124

patternc is strictly smaller than the support @f Therefore¢
is a good generator candidate of the next FCIP. Accordingly,
at each step of the depth-first enumeration a FIPG candidate |n hoth cases, using binary data is better when the mini-

cis generated from the previous ohéy applying a minimal  mal support is high (e.g. 90%). For low supports, a critical
change characterized bY". Then, each candidatehas to  issue, our algorithms deliver better execution times. Most
be checked whether it is a generator or not. We know that thﬁnportantly, the global redundancy effect discards theafse
candidate has no subsumers in its branch with same suppoHinary data, e.g. only.6% of all FISG are actually FIPG in
However, it could exist a branch with another FIRGvith dataset BL. Finally, the algorithidlinintChangeG-butper-
same image and resulting from less changes. Considering thérms MinintchangeG-h MinIntChangeG-thowever needs
lectic order on minimal changes, we use a reverse travers

of the tree (see Figurg 2: 7,8,9,10,1,4,5,2,3,6), as alread *http://funapp.cs.bilkent.edu.tr/

Table 3: Execution time for extracting FCIP (in ms).



Dataset minSupp|| GrGrowth  MinintChangeG-h  MinintChangeG{{ [FIPG|  |FISG|  HTaggl || IFCIP| L7
BL 90% <50 <50 <50 176 194 90% 112 157
80% <50 < 50 <50 1,952 2,823 69% 1,130 1.73

50% 150 1,212 529 66,350 222,088 29% 32,107 2

25% 3,432 27,988 3,893 411,442 3,559,419 11% || 171,192 2.4

1 123,564 438,214 24,141 1,165,824 69,646,301  1.6% 272,223 4.3

BK 90% <50 1,268 1,207 67,737 75,058 84% 48,847 13
85% 4,565 26,154 12,139 554,956 799,574 69% || 403,562 1.37
80% Untractable 512,126 107,700 2,730,812 NA NA 1,938,984 1.40

Table 4: Execution time for extracting FIPG and global rethncy evaluation.
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