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Abstract—A model of machine learning from positive and negative examples (JSM-learning) is
described in terms of Formal Concept Analysis (FCA). Graph-theoretical and lattice-theoretical
interpretations of hypotheses and classifications resulting in the learning are proposed. Hy-
potheses and classifications are compared with other objects from domains of data analysis and
artificial intelligence: implications in FCA, functional dependencies in the theory of relational
data bases, abduction models, version spaces, and decision trees. Results about algorithmic
complexity of various problems related to the generation of formal concepts, hypotheses, clas-
sifications, and implications.

1. INTRODUCTION

Machine Learning in broad sense is the domain related to mathematical models and practical
methods of adaptation of machine systems. More precise definitions depend on the type of a
learning system, its goal and data types it processes [56]. A typical refinement of the idea of learning
is learning from positive and negative examples, when a learning system obtains descriptions of
positive and negative examples and constructs a generalization of positive examples that does not
“cover” negative examples. In this review we consider a realization of this idea within the framework
of the JSM-method of hypothesis generation and Formal Concept Analysis (FCA), as well as its
relation with well-known models of data analysis and artificial intelligence.

JSM-method1 was formulated by V.K. Finn [16, 20, 19] as a theory of plausible inference on the
basis of infinite-valued first-order logical theory with quantifiers over tuples of variable length [20].
Within the framework of this theory it is possible to realize and justify inductive and abductive
inference of regularities. On the other hand, the realization of the JSM-method and the practice of
its application allows one to consider it as a method of machine learning [10, 12]. In contrast to the
majority of methods of machine learning where similarity is given as a metric or as a relation [12],
the JSM-method uses similarity defined as an algebraic operation with certain properties. The
main principle that underlies methods of machine learning, besides finding a decision rule that
separates positive and negative examples, is the principle of constructing a minimal cover of positive
examples (which does not cover negative examples, due to the principle of separating positive and
negative examples, see [53], [56]). Whereas the idea of separating positive and negative examples
is retained, the JSM-method use not the principle of minimal coverage, but the principle of finding
maximal similarity of these examples. Without underestimating the value of the idea of coverage
(which gives the lower bound of the set of all possible learned rules or classifiers in the sense of
subsumption relation on classifiers), we underline that the principle of maximal similarity, which is
in a certain sense dual to the principle of minimal coverage, indicates another (upper) bound of the
set of all possible classifiers ordered by logical strength (subsumption order). The relation between
1 Called so in honor of English philosopher and logician John Stuart Mill who proposed his schemes of inductive

reasoning in the 19th century.
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these bounds can be characterized in terms of most general and least general generalizations [60,
61], as well as version spaces [54, 55, 44, 45]. The definition of hypotheses and classification by
means of similarity operation has a natural graph-theoretical interpretation in terms of tri- and
quadro-partite graphs and their bipartite subgraphs with certain properties.

FCA [34] started from the paper of R. Wille [73] and developed further in his school. The
fundamental fact underlying FCA is the representability of complete lattices by ordered sets of
their meet- and join-irreducibles (indication to this fact for finite lattices was made in [22]). Since
ordered sets of irreducibles are naturally represented by binary matrices, this makes it possible
to apply certain aspects of the lattice theory to the analysis of data given by object-attribute
matrices. Establishing a relation between JSM-hypotheses and formal concepts (i.e., elements of
the lattice generated by the object-attribute matrix, see below) resulted in the interaction of the
FCA theory and the theory of JSM-method [47, 14, 37, 38]. On the one hand, it became possible
to introduce ideas of learning from positive and negative examples and extend some combinatorial
and algorithmic-complexity results to FCA and lattice theory. On the other hand, the fundamental
fact that formal concepts induce a lattice allows one to consider JSM-hypotheses in terms of lattice
theory. Besides mathematical elegance, the algebraic formalization helps solving certain problems
related to generation of hypotheses and classifications, hierarchical organization and vizualization
of the set of all hypotheses, as well as navigation in it.

The paper has the following structure. In Section 2 we give main definitions from the FCA, order
and lattice theory. In Section 3 definitions of hypotheses and classifications are given in terms of
FCA, examples are given. In Sections 4 and 5 we consider graph-theoretical and lattice-theoretical
interpretations of hypotheses and classifications. In Section 6 we discuss the relation of hypotheses
to well-known constructions from data analysis and artificial intelligence: implications in FCA [34],
functional dependencies in the theory of relational data bases [15], abduction models [25], version
spaces [55] and decision trees [64]. In Section 7 we give a review of results concerning complexity
of computing the set of formal concepts, hypotheses, classifications, and implication bases.

2. FORMAL CONCEPT ANALYSIS

First we recall the main definitions from the theories of ordered sets and lattices [1, 3]. An
ordered set (P,≤) consists of a nonvoid set P and a binary relation ≤ on A that satisfies the
following properties for all x, y, z ∈ P :

1. x ≤ x (reflexivity);
2. x ≤ y and y ≤ x imply x = y (antisymmetry);
3. x ≤ y and y ≤ z imply x ≤ z (transitivity).
Ordered sets are often called partially ordered sets. The fact that x ≤ y and x 6= y is denoted

by x < y (x is strictly less than y. The element a ∈ P is said to cover b ∈ P (denoted by a � b)
if a > b and there does not exist an element x ∈ P such that a > x > b. Assume that a system
of coordinates with vertical and horizontal axes is given on the plane R2. The diagram of an
ordered set is a plane embedding of the covering relation of (P,≤) such that for the pair a ≥ b the
vertical coordinate of a is larger than the vertical coordinate of b. Since in general case the covering
graph is not planar, an embedding allows for overlapping of arcs. In the literature the terms Hasse
diagram and line diagram [34] are also often used.2 In this paper we shall use the term “diagram”
following [3] and [23].

The upper bound of a subset X in the ordered set P is an element a ∈ P such that a ≥ x for all
x ∈ P . The least upper bound of the set X (denoted by supX) is an upper bound a such that a ≤ b
2 R. Wille notes that the term Hasse diagram is incorrect since objects of this type were considered by Birkhoff

earlier than by Hasse.
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for any upper bound b of X. The notion of the greatest lower bound (denoted by infX) of the set X
is defined dually by replacing ≥ with ≤. A lattice is an ordered set L where any two elements x
and y have a greatest lower bound or meet (denoted by x ∧ y) and a lowest upper bound or join
(denoted by x∨ y). The lattice L is called complete if any subset X ⊆ L has join and meet in L. A
semilattice is an ordered set where each two elements have a meet (this is called a lower semilattice)
or any two elements have an upper bound (upper semilattice). A sublattice of the lattice L is a
subset X ⊂ L such that a ∈ X and b ∈ X imply a ∧ b ∈ X and a ∧ b ∈ X. The interval [a, b]
consists of all elements x ∈ X that satisfy inequalities a ≤ x ≤ b. An order filter (order ideal) of
a lattice L is a subset X ⊂ L such that a ∈ X and b ≥ a imply b ∈ X (a ∈ X and b ≤ a imply
b ∈ X, respectively).

Binary operations ∧ and ∨ in lattices have the following properties:
1. x ∧ x = x, x ∨ x = x (idempotency);
2. x ∧ y = y ∧ x, x ∨ y = y ∨ x (commutativity);
3. x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z (associativity);
4. x ∧ (x ∨ y) = x ∨ (x ∧ y) = x (absorption).
In semilattices the properties 1–3 hold for the corresponding operations, i.e., the operation ∧ is

idempotent, associative, and commutative in a lower semilattice and the operation ∨ is idempotent,
associative, and commutative in the upper semilattice.

The following notions play the key role for the relation of the lattice theory and FCA. The
element of a lattice a is called ∧-irreducible (meet-irreducible) if a = b ∧ c implies a = b or a = c.
∨-irreducibility (or join-irreducibility) of the element a takes place when a = b ∨ c implies a = b or
a = c. The sets of all join- and meet-irreducible elements of the lattice L are denoted by J(L) and
M(L), respectively.

A subset D of a complete lattice L is called infimum-dense (supremum-dense) if L =
{∧x∈Xx|X ⊆ D} (L = {∨x∈Xx|X ⊆ D}, respectively).

Now we proceed to definitions from FCA.
Let G and M be sets that are called the sets of objects and attributes, respectively, and let

I ⊆ G ×M be a relation. This relation is interpreted as follows: for g ∈ G and m ∈ M we have
gIm if the object g has attribute m. The triple K = (G,M, I) is called a formal context. The
Galois connection between the ordered sets (2G,⊆) and (2M ,⊆) is given by the following mappings
called derivation operators: for any A ⊆ G and B ⊆M

A′ := {m ∈M | gIm for all g ∈ A}, B′ := {g ∈ G | gIm for all m ∈ B}.

The pair of sets (A,B) such that A ⊆ G, B ⊆M , A′ = B and B′ = A is called a formal concept
of the context K with (formal) extent A and (formal) intent B. Note that the formal definition of
a concept as a pair of this form complies with the logical-philosophical tradition, e.g., it is close to
the notion of a concept in Logique de Port-Royale (A. Arnauld, P. Nicole, France, XVII century).

As it was shown in [73, 34] (for finite sets it was shown in [22]), the set of all formal concepts of
a formal context K forms a complete lattice with the following meet and join operations:

∧
j∈J

(Aj , Bj) =

⋂
j∈J

Aj ,

⋃
j∈J

Bj

′′ , ∨
j∈J

(Aj , Bj) =

⋃
j∈J

Aj

′′ , ⋂
j∈J

Bj

 .
This lattice called a formal concept lattice (or Galois lattice in French and Canadian literature)

is usually denoted by B(K) and the set of its elements is denoted by B(K). Moreover, the following
statement holds. If L is a complete lattice, then L ∼= B(K) iff there exist mappings γ : G 7→ L and
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µ : M 7→ L such that the set γG is join-dense in L, µM is meet-dense in L, and gIm is equivalent
to γg ≤ µm for all g ∈ G and m ∈M . In particular, L ∼= B(L,L,≤), L ∼= B(J(L),M(L),≤).

The fact that in the formal context K = (G,M, I) the object g has attribute m (i.e., gIm holds)
is equivalent to (g′′, g′) ≤ (m′,m′′). Moreover, it is also equivalent to the fact that the diagram of
the lattice B(K) has an upward-directed path from the vertex corresponding to the formal concept
(g′′, g′) to the vertex corresponding to the formal concept (m′,m′′).

The definitions below are related to implications on attributes that are certain dependencies
between subsets of attributes. The relation A → B is called an implication (on attributes) if
A′ ⊆ B′ (or B ⊇ A′′), i.e., all objects from G that have the set of attributes A also have the set
of attributes B. Implication on objects are defined similarly. Unless explicitly specified, by an
implication we shall mean implication on attributes.

The implication A→ B in the formal context K corresponds to the fact that the formal concept
(A′, A′′) lies below than the formal concept (B′, B′′) in the diagram of the concept lattice B(K).

Implications of a formal context satisfy the following Armstrong axioms [34] (they were men-
tioned first in [21], see also [15]) for arbitrary X, Y , Z:

1. X → X;
2. X → Y implies X ∪ Z → Y ;
3. X → Y and Y ∪ Z → W implies X ∪ Z →W .
Besides formal contexts defined above (two-valued contexts), so-called many-valued contexts are

studied in FCA. Here attributes can take values from a set of values. Formally, a many-valued
context is a quadruple (G,M,W, I), where G, M W are sets (of objects, attributes, and attribute
values, respectively) and I is a ternary relation I ⊆ G×M×W giving the value w of the attribute m,
where

(g,m,w) ∈ I and (g,m, v) ∈ I implies w = v.

Representation of a many-valued context by a two-valued one is called scaling. Possible types
of scaling are considered in [34].

3. JSM-METHOD

The first version of the JSM-method of automated hypotheses generation was described in [16].
Later versions can be found in [19], see also survey [10]. Plausible reasoning in the JSM-method
is formalized by means of an infinite-valued first order logical theory with quantifiers over tuples
of variable length. Logical aspects of the JSM-method are given in detail in [20, 19], the problems
of definability of plausible JSM-reasoning are studied in [2]. As a method of data analysis, JSM-
method is a system of machine learning from positive and negative examples [10, 14, 37] based
on the general principle of learning from positive and negative examples [53, 62, 56]: for given
positive and negative examples w.r.t. a “goal concept,” one needs to construct a “generalization”
of positive examples that does not “cover” any negative examples. Generalization of examples in
the JSM-method is defined by means of a semilattical similarity operation [4, 17, 10].

Now we present the learning model in the JSM-method [19] in terms of FCA.
Let K = (G,M, I) be a formal context and w 6∈M is a certain goal attribute of objects, different

from attributes from the set M (the latter are called structural). For example, in pharmacological
applications structural attributes may correspond to certain subgraphs of molecular graphs and w
may correspond to their biological property.

The training sample is given by sets of positive, negative, and undetermined examples. Positive
examples (or (+)-examples) are objects that are known to have the property w, negative examples
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(or (−)-examples) are objects that are known not to have the property. Undetermined examples
(or (τ)-examples) are objects that are neither known to have this property nor not to have this
property. It assumed that results of learning from positive and negative examples are used for the
classification of undetermined examples, i.e., forecast whether the undetermined examples really
have or do not have the goal property w.

In terms of FCA this situation can be described by means of three contexts: positive con-
text K+ = (G+,M, I+), negative context K− = (G−,M, I−), and undetermined context Kτ =
(Gτ ,M, Iτ ). Here G+, G−, and Gτ are sets of positive, negative, and undetermined examples,
respectively; M is a set of structural attributes; Iε ⊆ Gε ×M, ε ∈ {+,−, τ} are relations that
define structural attributes of positive, negative, and undetermined examples, respectively. Deriva-
tion operators in these contexts are denoted by superscripts +,−, τ , respectively, e.g. A+, A−

denote a single application of derivation operators in contexts K+, K−, respectively; Aττ denotes
the application of a composition of derivation operators in the context Kτ .

Now a positive hypothesis by Finn (called a “counterexample forbidding hypothesis” in [16, 19])
can be defined in the following way.

Let a positive context K+ = (G+, M, I+), negative context K− = (G−, M, I−), and undeter-
mined context Kτ = (Gτ ,M, Iτ ) be given. The context K± = (G+ ∪G−,M ∪{w}, I+ ∪ I−∪ (G+×
{w})) is called a learning context. The context Kc = (G+∪G−∪Gτ ,M∪{w}, I+∪I−∪Iτ∪G+×{w})
is called a classification context. Derivation operators in these two contexts are denoted by super-
scripts ± and c, respectively. The pair (e+, h+) is called a positive concept if it is a formal concept
of the context K+. The set A ⊆ G+ (B ⊆M) is called a positive formal extent (intent) if (A,A+)
((B+, B), respectively) is a positive concept. A positive formal intent h+ is called a positive or
(+)-prehypothesis w.r.t. the property3 w if it is not a formal intent of any negative concept (i.e.,
∀(e−, i−) ∈ B(G−), h+ 6= i−). If a positive formal intent h+ is not contained in intent of any neg-
ative example (i.e., ∀g− ∈ G−, h+ 6⊆ {g−}−)), then it is called a positive or (+)-hypothesis w.r.t.
the property4 w. The set e+ is called a formal extent of the positive hypothesis h+. A falsified
(+)-hypothesis is a positive formal intent h such that h ⊆ {g−}− for some negative example g−.
A negative (or (−)-) hypothesis is defined similarly.

It follows directly from the definition that hypothesis is a prehypothesis. Hypotheses are used
for classification of undetermined examples from the set Gτ (i.e., for forecasting if they actually
have the goal attribute w or not).

If an undetermined example gτ ∈ Gτ contains a positive hypothesis h+ (i.e., {gτ}τ ⊇ h+), then
it is said that h+ is a hypothesis in favor of a positive classification of the undetermined example gτ .
A hypothesis in favor of a negative classification gτ is defined in a similar way. If there is a hypothesis
in favor of a positive classification of gτ and there is no hypothesis in favor of negative classification
of gτ , then gτ is classified positively.5 A negative classification of gτ takes place in the case where
there are hypotheses in favor of negative classification and there are neither hypothesis in favor of
positive nor in favor of negative classification. If {gτ}τ does not contain any negative or positive
hypotheses as subsets, the classification does not take place. If {gτ}τ contains both positive and
negative hypotheses, then it is said that the classification is contradictory.

One can indicate a useful subset of hypotheses equivalent to the set of all hypotheses w.r.t. all
possible classifications. Formally, a positive hypothesis h+ is a minimal positive hypothesis if no
subset h ⊂ h+ of it is a positive hypothesis [11].

3 In [16, 19] this object is called a simple hypothesis of the first kind.
4 In [16, 19] it is required that |e+| ≥ 2, but we shall neglect this inessential condition to retain mathematical

homogeneity.
5 In papers [16], [19] the undetermined example gτ is called a “(+)-hypothesis of the second kind.”
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The following definitions are related to the generalized JSM-method [18] that uses a more general
idea of causality: a hypothetical cause of a goal property may have specific “hindrances” that inhibit
the manifestation of the goal property. The pair (h+,X ) is called a positive generalized hypothesis
with a set of hindrances X if h+ is a positive formal intent and

X := min{(h+ ∪ {m})−− | m ∈M \ h+},

where min(Y ) takes inclusion-minimal subsets from the set Y .
The intuitive meaning of a generalized hypothesis is that h+ is a hypothetical cause of the

property w only in the absence of elements of the set X called hindrances. Note that a hypothesis
is a generalized hypothesis with empty set of hindrances.

The definition of a classification by means of generalized hypotheses looks as follows. If h+ is
a subset of the intent of an undetermined example gτ ∈ Gτ and (h+,X ) is a positive generalized
hypothesis such that gττ does not contain any hindrance from X (i.e., {gτ}τ ⊇ h+ and ∀X ∈ X
{gτ}τ ⊇ X), then it is said that (h+,X ) is a generalized hypothesis in favor of a positive classification
of the undetermined example gτ . A generalized hypothesis in favor of a negative classification of
gτ is defined similarly. Now the rule of classification of the undetermined example gτ by means
of generalized hypotheses may be described in the same way as above. For example, if there
is a generalized hypothesis in favor of a positive classification of gτ and there is no generalized
hypothesis in favor of a negative classification of gτ , then gτ is classified positively, etc.

Another important element of the JSM-method is the principle of sufficient ground for accep-
tance of hypotheses [19], according to which the generated hypotheses with extent greater or equal
than two should correctly classify initial positive and negative examples (regarded as undetermined
during the classification). If this condition is not satisfied, then it is considered that the genera-
tion of hypotheses in the learning context is not justified and the set of initial examples should be
updated with new ones.

The construction of the JSM-method allows one to iteratively update the sets of positive and
negative examples with results of positive and negative classifications of undetermined examples.
This process goes until stabilization, i.e., the iteration step when no new classifications can be
made [19]. In practice of the JSM-method the stabilization takes place in few steps.

Example 3.1. Consider a context with results of expert analysis of 17 winter chains (information
is taken from ADAC Magazin, 1999, no. 11). Hypotheses and implications of this context were
considered in detail in [37].

Different chains are considered here as objects (examples), their consumer properties and features
of constructions are taken as attributes.

As a goal property we took “high cost of a chain” (thus, positive examples correspond to ex-
pensive chains and negative examples correspond to cheap chains). In this paper we consider only
a subset of the set of examples (four positive and three negative examples) from initial seventeen
and a simplified scaling (i.e., a means of transforming a many-valued context to a two-valued one,
see [34] for details) to illustrate the definition of a hypothesis and their graph-theoretic interpre-
tation by a simple example. The values of the attribute system define the type of a chain: R—a
rope chain, S—a steal chain, Q—a quick mounting chain. The attribute mount takes the values F
and B that mean the ability of a chain to be mounted either on front wheels or both on front and
rear wheels. All values of these attributes are incomparable.

The initial values of other attributes were numerical. The attribute con correspond to the average
expert estimate of the chain convenience; the values snow and ice correspond to the average expert
estimate of the maneuverability of a car with the chain on snow and ice, respectively; the attribute
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Table 3.1. Positive context

chain system mount con snow ice dur grade

2 S B + + + +
5 Q B + + + +
8 Q B + + +
14 Q B + +

Table 3.2. Negative context

chain system mount con snow ice dur grade

1 R F + + + + +
3 R F + + + +
17 R F +

Table 3.3. Undetermined context

chain system mount con snow ice dur grade

18 R B + + + +
19 R F + + + +
20 Q F + +

dur corresponds to the average expert estimate of durability of a chain; grade corresponds to the
average expert estimate of the chain quality. In the initial statement the smaller values of the
attributes con, snow, ice, dur correspond grade to better estimates of the corresponding chain
properties. In [37] we used some scales for turning numerical values into Boolean ones. Here we
use a simpler scaling: these attributes take true values (denoted by + in the corresponding table
entries) if the initial values were less than a certain threshold. The corresponding positive and
negative contexts are given in Tables 3.1, 3.2. The undetermined context is given in Table 3.3.

Here {B, con, dur} is a minimal positive hypothesis. It is unique since the intersection of formal
intents of all positive examples is not empty and does not lie in formal intent of any negative
example.

Other positive hypotheses are

{Q,B, con, dur}, {B, con, dur, grade}.

These hypotheses may be useful from the standpoint of taxonomy of positive examples. For
example, the first nonminimal hypothesis describes the class of chains of a certain type, same
mounting possibilities, which are convenient but behave bad on snow.

A minimal negative hypothesis here is {R,F}. It is also unique since the intersection of formal
intents of all negative examples is not empty and does not lie in formal intent of any positive
example.

Another negative hypothesis is

{R,F, con, ice, grade}.

Note that there exist subsets of the minimal positive hypothesis (such as {Q} or {B}) that give
smaller sufficient conditions for the occurrence of the goal property, but the minimal hypothesis
gives a more detailed description of an “expensive chain.” The minimal hypothesis takes into ac-
count the set of all attributes that occured with the goal one. One can say that this set corresponds
to the “notion of expensive chain.”
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As for the classification of the undetermined examples, example 18 is classified positively, since
there is a hypothesis {B, con, dur} in favor of positive classification and there is no hypothesis in
favor of the negative classification. Example 19 is classified negatively since there is a hypothesis
{R,F} in favor of this and there is no hypothesis in favor of positive classification. Example 20
is not classified since there is neither hypotheses for its positive classification nor for the negative
one.

4. LATTICE-THEORETIC INTERPRETATION OF HYPOTHESES
AND CLASSIFICATIONS

The definition of a prehypothesis implies that a positive prehypothesis h+ corresponds to an
element of the lattice B(K+) for which there does not exist an element of the lattice B(K−)
with the same formal intent. Thus, the problem of existence of a prehypotheses is equivalent to
the problem of isomorphism of a lattice to a sublattice of another lattice. Formally, we have the
following

Assertion 4.1. Let there be a positive context K+ = (G+, M, I+) and a negative context K− =
(G−, M, I−). There is no positive prehypotheses iff there is an isomorphism of the lattice B(K+)
into the lattice B(K−) that takes each formal concept of the context K+ (element of the lattice
B(K+)) into the formal concept of the context K− (element of the lattice B(K−)) with the same
formal intent.

Hypotheses have the following interpretation. Each negative example “cuts off” an order filter
consisting of falsified hypotheses from the lattice of positive concepts B(K+). The set of all positive
hypotheses is a complementation of the set of falsified hypotheses to the set of positive concepts and
is closed with respect to the join operation of the lattice of positive concepts. The same statement
(where + and − are interchanged) holds for the lattice B(K−)).

The situation looks different in the concept lattice B(K±). One can distinguish the following
three types of formal concepts: first, concepts of the form (A,B ∪{w}), where B is a formal intent
of the context K+. Second, there are concepts of the form (A,B), where B is a formal intent of
the context K−. Third, there are formal concepts with intents that are neither formal intents of
the context K+ nor formal intents of the context K−. These are concepts of the form (A,B), for
which A = E+ ∪ E−, E+ ⊆ G+, E− ⊆ G−, B 6= E+

+ , B 6= E−− .

Assertion 4.2. A positive hypothesis corresponds to a formal concept of the context K± that has
the form (A,B ∪ {w}) and for which there is no formal concept of the context K± with intent B.

A negative hypothesis corresponds to a formal concepts of the context K± of the form (A,B),
w 6∈ B such that there is no concept of the context K± with formal intent containing B ∪{w} (i.e.,
lying below the corresponding vertex in the lattice diagram).

In the concept lattice B(K±) the formal concepts that correspond to positive and negative
hypotheses lie below (in the sense of order ≤ on formal concepts from K±) formal concepts whose
intents are not hypotheses.

In terms of this lattice the problem of classification of an undetermined example gτ ∈ Gτ looks
as follows. Consider an order filter of the lattice B(K±) given by maximal subsets of the set
{gτ}τ ∪{w} that are formal intents of the context K±. If there exists a formal concept (A,B∪{w})
lying below in this order filter so that the concept (A,B) does not lie in the same order filter (hence,
not in the lattice B(K+)) and w 6∈ B, then B is a hypothesis in favor of the positive classification
of the undetermined example gτ . The absence of a hypothesis in favor of the negative classification
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of the example gτ means that for any formal concept (A,B) of the lattice B(K±) such that w 6∈ B
the concept (A,B) lies in the order filter of the lattice B(K±) corresponding to the undetermined
example gτ there exists a formal concept lying below (((B ∪ {w})′(B ∪ {w})′′).

In the lattice of the classification context Kc the situation looks as follows.

Assertion 4.3. Given a formal context Kc and an undetermined example gτ , a hypothesis in favor
of a positive classification of the undetermined example gτ exists iff there exist certain A,B,Aτ for
which the following conditions hold: A,B ⊆M , gτ ∈ Aτ ⊆ Gτ :

1. (A,B ∪ {w}) ∈ B(Kc),
2. (A ∪Aτ , B) ∈ B(Kc).

Moreover, there does not exist a hypothesis in favor of negative classification of example gτ ∈ Gτ
iff the relation C ∩ G+ 6= ∅ (C lies in the order filter of the lattice B(Kc) given by at least one
positive example) holds for any formal concept (C,D) ∈ B(Kc) such that the following conditions
hold.

3. w 6∈ D, i.e., the formal concept (C,D) does not lie in the order ideal of the lattice B(Kc)
given by the formal concept (w′′, w′);

4. D ⊆ {gτ}c, i.e., the formal concept (C,D) lies in the order ideal of the lattice B(Kc) given
by the formal concept ({gτ }cc, {gτ }c).

At least one of conditions 3–4 is violated for the contradictory classification, whereas State-
ment 4.3 always holds. For the undetermined classification the condition of Statement 4.3 does not
hold.

Lattice-theoretic interpretation of generalized hypotheses has the following form. Each gener-
alized hypothesis (h+,X ) corresponds to an element of the lattice B(K+) and the set of elements
of the lattice B(K−) each of which is maximal (in the sense of order relation in B(K−)) among
negative concepts that are less than (h−+, h

−−
+ ). The set of elements of the lattice B(K+) that

correspond to generalized hypotheses with nonempty set of hindrances is the complementation (to
the set of all elements of the lattice B(K+)) of the set of all elements of the lattice B(K+)) that
correspond to positive hypotheses.

5. GRAPH-THEORETIC INTERPRETATION OF HYPOTHESES
AND CLASSIFICATIONS

We shall need the following auxiliary definitions. In the bipartite graph B = (X ∪ Y,Z), where
X and Y are sets of vertices of different parts (X ∩ Y = ∅), and Z is the set of edges, the set of
vertices X1 ⊆ X dominates the set of vertices Y1 ⊆ Y if each vertex from Y1 is adjacent to a vertex
from X1. The common shadow of the set of vertices X1 ⊆ X is defined as the set Y2 ⊆ Y of all
vertices adjacent to all vertices of the set X1.

By the learning context K± = (G+ ∪ G−,M ∪ {w}, I+ ∪ I− ∪ (G+ × {w})) one can construct
a tripartite graph T = (W1 ∪W2 ∪W3, E1) such that the vertices of the set W1 are in one-to-one
correspondence to (+)-examples, the vertices of the set W3 are in one-to-one correspondence to
(−)-examples, the vertices of the set W2 are in one-to-one correspondence to the elements of M ,
the subset of edges E1∩W1×W2 is given by the relation I+, and the subset of edges E1∩W2×W3

is given by the complementation of the relation I−, i.e., by the relation W2 ×W3 \ I−. A positive
hypothesis h of the context K± corresponds to the subset V2 ⊆W2 that dominates all the vertices
from the set W3 and induces inclusion maximal bipartite subgraph on the vertices W1 ∪W2 (i.e.,
the common shadow V2 on the set W1 is the set V1 ⊆ W1, and the common shadow of the set V1

on the set W2 is V2 ⊆W2).
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Example 5.1. The graph T in Fig. 1 corresponds to the learning context from Example 3.1.
Note that the inverse also holds: for each tripartite graph the problem about the existence of a

subgraph of the type indicated above is reduced to the problem of existence of a hypothesis for the
learning context constructed by the tripartite graph. Prehypotheses and generalized hypotheses
also have natural graph-theoretic interpretation on tripartite graph. We define the sets of vertices
W1 ∪ W2 ∪ W3 (where the sets W1, W2, and W3 are called the left, middle, and right parts,
respectively) of this graph in the same way as in the case of interpretation of hypotheses: the set
W1 corresponds to the set of positive examples G+, the set W2 corresponds to the set of attributes
M , and the set W3 corresponds to the set of negative examples G−.

The set of edges E1 ⊆ W1 ×W2, as in the case of hypotheses, is defined as E1 := I+. The set
of edges E2 ⊆ W2 ×W3 is defined similarly, i.e., E2 := I−, i.e., complementary w.r.t. definition in
case of hypotheses. Then a positive prehypothesis corresponds to a complete bipartite subgraph
(V1 ∪ V2, V1 × V2) (here V1 ⊆ W1, V2 ⊆ W2) of the graph (W1 ∪W2, E1), for which there does not
exist a complete bipartite subgraph of the graph (W2 ∪W3, E2) with the same set of vertices in the
middle part W2. A positive generalized hypothesis corresponds to a complete bipartite subgraph
(V1 ∪ V2, V1 × V2) (here V1 ⊆ W1, V2 ⊆ W2) of the graph (W1 ∪W2, E1), for which there exists a
set of complete subgraphs of the graph (W2 ∪W3, E2), where the set of vertices in the middle part
of each graph from this set contains the set V2.

It is worth while to consider also a graph-theoretic interpretation of the problem of classification
of undetermined examples. As we show below, this can be used for the study of algorithmic com-
plexity of classification of undetermined examples. An obvious strategy of computing classifications
is computing the set of all (minimal) hypotheses with their subsequent use for the classification. The
problem concerning the possibility of classification without precomputing all (minimal) hypotheses
seems to be interesting both from theoretical and practical standpoints.

By definition, the problem about classification of an undetermined example, say about positive
classification, consists of two subproblems. First, it is required to test the existence of a hypothesis
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in favor of a positive classification and second, it is required to test the absence of a hypothesis in
favor of negative classification.

The problem of existence of a hypothesis in favor of the positive classification of an undetermined
example gτ may be formulated in the form of the following decision problem:

INSTANCE. A classification context Kc = (G+ ∪G−∪Gτ ,M ∪{w}, I+ ∪ I−∪ Iτ ∪ (G+×{w})),
where Gτ = {gτ}.

QUESTION. Does there exist a hypothesis h in favor of positive classification of the undeter-
mined example gτ , i.e. such that h ⊆ {gτ}τ?

The problem about the absence of a hypothesis in favor of the negative classification is formulated
complementary.

It can be shown that the problem about existence of a hypothesis in favor of positive classification
is equivalent to the following problem about the domination over parts in a quadripartite graph.

INSTANCE. Given a quadripartite graph Q = (V1 ∪ V2 ∪ V3 ∪ V4, E), E ⊆ (V1 × V2) ∪ (V2 ×
V3) ∪ (V3 × V4). The graphs B1, B2, B3 that are subgraphs of the graph Q induced by the sets of
vertices (V1 ∪ V2), (V2 ∪ V3), (V3 ∪ V4), respectively.

QUESTION. Does there exist a complete bipartite subgraph (W2 ∪W3,W2 ×W3) of the graph
B2 such that it is inclusion maximal, W2 ⊆ V2, W3 ⊆ V3, the set of vertices W2 dominates V1, and
the set of vertices W3 dominates V4?

We show that the problem about domination over parts in a quadripartite graph is reduced to
a problem about the existence of a hypothesis in favor of positive classification, i.e., in the same
way as the problem about hypothesis is constructed from the problem about tripartite graph.

Classification context Kc with a single undetermined example gτ ∈ Gτ is given by the problem
about domination over parts in the following way: M = (V1 ∪ V3), G+ = {gi | i = 1, . . . , |V2|},
G− = {fl | l = 1, . . . , |V4|}. The relation I+ is given by example intents in the following way: {gi}+
consists of all vertices from the set V1 that are not adjacent to the vertex v2

i ∈ V2 and all vertices
from the set V3 that are not adjacent to the vertex v2

i ∈ V2. Undetermined context is given by
one-element set of examples Gτ = {gτ}, and the relation Iτ is given by the relation {gτ}τ = V3.
The relation I− is defined as follows: {fl}− = V3\{w3

1 , . . . , w
3
q}, where {w3

1 , . . . , w
3
q} is the set of all

vertices from the set V3 adjacent to the vertex v4
l ∈ V4.

Example 5.2. Consider positive, negative, and undetermined contexts from Example 3.1 and the
problem of classification of the undetermined example 18 with intent {R, B, con, snow, ice, dur}.

The undetermined example is classified positively, since the minimal positive hypothesis is con-
tained in the set {gτ}τ (note that nonminimal hypotheses are not its subsets) and no negative
hypothesis is contained in the set {gτ}τ . In terms of the corresponding quadripartite graph in
Fig. 2 the set of vertices {2, 5, 8, 14}∪{B, con,dur} induces a complete bipartite subgraph, the set
of vertices {2, 5, 8, 14} dominates all vertices of the first part and the set of vertices {B, con,dur}
dominates all vertices of the fourth part.
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6. HYPOTHESES AND RELATED NOTIONS
FROM INTELLIGENT DATA ANALYSIS

In this section we show how hypotheses are related to certain well-known notions from data
analysis and artificial intelligence, such as implications in FCA [34], functional dependencies [15,
52], and version spaces [55, 45].

6.1. Hypotheses and Implications

Let K+ and K−, as before, denote positive and negative formal contexts w.r.t. a goal attribute
w and

K± := (G+ ∪G−,M ∪ {w}, I+ ∪ I− ∪ (G+ × {w}))

is a learning context. In this context derivation and closure operators are denoted by superscripts
± and ±±, respectively. In particular, for an arbitrary set of attributes P ⊆ M we write P±± to
denote the least formal intent of the formal context K± that contains P . Derivation and closure
operators for contexts K+ and K− are denoted by superscripts +, − and ++, −−, respectively.

Assertion 6.1. Let K+ and K− be positive and negative contexts and let h+ be a positive hypoth-
esis. Then h+ → {w} is an implication in the learning context

K± := (G+ ∪G−,M ∪ {w}, I+ ∪ I− ∪ (G+ × {w})).

Similarly, a negative hypothesis h− is an implication in the context

K± := (G+ ∪G−,M ∪ {¬w}, I+ ∪ I− ∪ (G− × {¬w})),

where an object has attribute ¬w iff it does not have the attribute w.
An implication basis is a subset of the set of all implications from which all implications can

be inferred by means of Armstrong axioms applied as inference rules. A minimal (in the number
of implications) base was characterized in [30] by minimal nodes of irredundancy. A more elegant
recursive definition was given in [33] (see also [34]) by means of pseudointents.

A pseudointent [34] of a formal context (G,M, I) is a set P ⊆M such that
1. P 6= P ′′ and
2. for any pseudointent Q ⊆ P , Q 6= P the relation Q′′ ⊆ P does not hold.
Pseudointents are related to minimal hypotheses in the following way [37]:

Assertion 6.2. Let H be a minimal positive hypothesis w.r.t. the goal attribute w (so, w /∈ H
holds). Then

1. if P ⊆ H is a pseudointent for which w ∈ P±±, then P±± = H ∪ {w};
2. there exists a pseudointent P of the context K± such that P ⊆ H and P±± = H ∪ {w};
3. if P is a pseudointent such that w /∈ P , but w ∈ P±±, then P±±\{w} is a positive hypothesis.6

6.2. Implications and Dependencies

We show equivalence (two-direction reducibility by Karp [39]) of implications and functional de-
pendencies in relational databases. Recall definitions of relation [27] and functional dependency [21]
(see [15, 52, 29]).
6 Not necessarily minimal.
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Let M be a finite set of attributes. The mapping dom takes each attribute m ∈M in its domain
dom(m). Relation R over M is a subset of Cartesian product

∏
m∈M dom(m). The relation R over

M is given by a set of tuples of size n : R = {g1, . . . , gn},

gi : M →
⋃
m∈M

dom(m), gi(m) ∈ dom(m), i = 1, . . . , n.

A functional dependency X → Y for X,Y ⊆ M holds for relation R = {g1, . . . , gn} if gi(m) =
gj(m) for all m ∈ X implies gi(m) = gj(m) for all m ∈ Y , ∀gi, gj ∈ R, i 6= j.

In terms of FCA it is natural to consider relation as a many-valued context whose tuples corre-
spond to object intents.

A lot of literature is devoted to the relation of functional dependencies with lattices (see [29]
and papers cited there) where results on characterization of lattices that correspond to given sets
of functional dependencies on the set of attributes M are given.

For an arbitrary relation R given by a many-valued context K = (G,M,W, I) there exists a
context KN = (P2,M, IN ), where P2 : = {{g, h} | g, h ∈ G, g 6= h} and {g, h}INm, iff m(g) = m(h),
so that X → Y is an implication of the context K iff it is a functional dependency for the relation
R (the proof is given in [34], Section 2.4).

Below we present the inverse reduction.

Assertion 6.3. For each context K = (G,M, I) there exists a relation R such that X → Y is an
implication of the context K iff X → Y is a functional dependency for the relation R.

Proof. To each object g ∈ G we assign a function g : M 7→ {0, 1} in a natural way: g(m) := 1 if
(g,m) ∈ I and g(m) := 0 otherwise. We construct the required relation R by the context K as a
many-valued context Km = (G ∪ {g0},M,Wm, Im). Attributes of the set M take values from the
set Wm = {w1, . . . , w|G|}. The relation Im is defined as follows: g0(m) = 1 for all m ∈ M . For
g ∈ G

(g,m, 1) ∈ Im, if (g,m) ∈ I and (g,m,mg) ∈ Im otherwise.

Let X → Y be an implication of the context K. By the definition of the implication, X ′ ⊆ Y ′.
It means that (g,m) ∈ I for all m ∈ X implies (g,m) ∈ I for all m ∈ Y . Then, in the context K,
g(m) = 1 for all m ∈ X implies g(m) = 1 for all m ∈ Y .

Let gi(m) = gj(m) for all m ∈ X. By the construction of the many-valued context Km, all
nonunit attribute values are different for different objects and hence gi(m) = gj(m) iff gi(m) =
gj(m) = 1. Therefore, by the above condition we have gi(m) = gj(m) for all m ∈ Y , which means
that the dependency X → Y holds for relation R.

In the other direction. Let the dependency X → Y hold for the relation R and let g(m) = 1
for some g ∈ G and all m ∈ X. By the construction of Km, g0(m) = 1 for all m ∈ M . Hence,
g0(m) = g(m) for all m ∈ X. By the definition of dependency X → Y for the relation R, we have
g0(m) = g(m) for all m ∈ Y , but since g0(m) = 1 for all m ∈M , we have g(m) = 1 for all m ∈ Y .
Therefore, (g,m) ∈ I for all m ∈ X implies (g,m) ∈ I for all m ∈ Y in the context K, which means
that X ′ ⊆ Y ′ and X → Y is an implication in the context K �.

Thus, a hypothesis is also a functional dependency for a suitable relation.
Recently, the search for dependencies attracts great attention in relation with the search for

information in the world wide web and very large databases. The related domain was called
data mining and knowledge discovery. Some researchers [68, 67, 71] in this domain use intensively
concept lattices and constructions related to them: implications, dependencies, partial implications
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and dependencies. The set of attributes A partially implies the set of attributes B if “many” objects
(the “majority”) that have the set of attributes A, have also the set of attributes B (see [51, 71]
for exact definitions).

6.3. The Version Space between Minimal Hypotheses and Proper Premises

The term “version space” was proposed by T. Mitchell in [54], [55] and became the name of a
Machine Learning domain. Version spaces can be defined differently, e.g., Mitchell defined them
in terms of sets of maximal and minimal elements, in [66] they are defined in terms of minimal
elements and sets of negative examples. Version spaces can also be defined in terms of some
matching predicate. These representations are equivalent, however transformations from one into
another are not always polynomially tractable. We will use the representation with matching
predicates. According to [54, 66] the basic notions of the version spaces are as follows:

Instance language Li by means of which instances are described. Concept language Lc by means
of which concepts are described. Concepts may be considered extensionally (as in [43]) as sets of
instances or by means of a matching predicate M(c, i) that defines that a concept c covers or not
covers an instance i: M(c, i) iff i is an instance of concept c. The set of concepts is partially ordered
by more general or equal relation ≤: for c1, c2 ∈ Lc, c1 ≤ c2, i.e., the concept c1 is more general
than the concept c2 or coincides with it, if every instance of concept c2 is an instance of concept c1.

Sets I+ and I− of positive and negative instances of a target concept. Each instance is described
in terms of the language Li, I+ ∩ I− = ∅; the target concept is not given explicitly.

Consistency relation cons(c, I+, I−): cons(c, I+, I−) holds iff for every i ∈ I+ M(c, i) and for
every i ∈ I− ¬M(c, i). A concept for which consistency relation holds is called consistent. The set
of all consistent concepts in Lc is called a version space or VS.

The learning problem in a version space is defined as follows:

Given Lc,Li,M(c, i), I+ , I−.
Find Version space V S(Lc,Li,M(c, i), I+ , I−).

Version spaces are often considered in terms of boundary sets proposed in [55]. They can be
defined if the language Lc is admissible, i.e., if every chain in it has a minimal and a maximal
element. In this case,

GV S = MAX(V S) = {c ∈ V S|¬∃c1 ∈ V S c ≤ c1},
SV S = MIN(V S) = {c ∈ V S|¬∃c1 ∈ V S c1 ≤ c}.

The following result from [44] about merging version spaces provides a convenient means for
updating and incremental construction of version spaces:

For version spaces VS1(I+
1 , I

−
1 ) and VS2(I+

2 , I
−
2 ) based on the sets of examples (I+

1 , I
−
1 )) and

(I+
2 , I

−
2 ) the version space VS(I+

1 ∪ I+
2 , I

−
1 ∪ I−2 ) based on the union of examples of both version

spaces consists of common elements of VS1 and VS2, or

V S(I+
1 ∪ I+

2 , I
−
1 ∪ I−2 ) = V S(I+

1 , I
−
1 ) ∩ V S(I+

2 , I
−
2 ).

Below we relate version spaces with implications and hypotheses.
Recall that a set Q is a proper premise of a context K = (G,M, I) if Q ⊂ M , Q′′ 6= Q, and

(Q \ {n})′′ 6= Q′′ for every n ∈ Q [34]. We introduce the notion of a relative proper premise similar
to that of a relative pseudointent. For a learning context K± w.r.t. a goal attribute w a set Q ⊂M
is called a proper premise relative to the goal attribute if it is a proper premise of K±, w 6∈ Q, and
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w ∈ Q′′. For a learning context K± a set Q ⊂M is called a positive or (+)-classifier if Q ⊂ g′+ for
a (+)-example g+ and Q 6⊂ g′− for any (-)-example g−.

Consider a learning context K± and the following specification of the version space. Let the
instance language Li be P(M), the power set of M , the concept language Lc coincide with Li, and
the matching predicate M(c, b) for c ∈ Lc, b ∈ Li be defined as follows: M(c, b) iff c ⊆ b. The sets
of positive and negative instances of a target concept are the sets of positive and negative examples
of the context K±.

To avoid collision of notations (e.g., I denotes a set of instances in version space models and the
relation of a formal context in the FCA), instead of the sets I+ and I− of positive and negative
instances, we shall rather speak of sets G+ and set G− of positive and negative examples from the
contexts K+ and K−, respectively. Moreover, since the word “concept” is used differently in FCA
and version spaces, we shall use the word “classifier” (as, e.g., in [44]) instead of “concept” when
speaking about version spaces. The lower and upper boundary of a version space will be denoted
by SV S and GV S instead of S and G, respectively.

Thus, the version space that corresponds to the learning context K± can be represented by the
tuple

〈P(M),P(M),⊆,K+ ,K−〉.

Assertion 6.4. The version space V S = 〈P(M),P(M), ⊆,K+,K−〉 is not empty iff there is a
single minimal (+)-hypothesis of the learning context K±.

Assertion 6.5. If the version space V S = 〈P(M), P(M), ⊆, K+, K−〉 is not empty, then the
corresponding boundary sets GVS and SVS are given as follows: SVS is the set consisting of a
single minimal (+)-hypothesis and GVS is the set of all proper premises w.r.t. the goal attribute.

Assertion 6.6. The boundary sets SVS and GVS of the nonempty version space V S =〈
P(M),P(M),⊆, K

1
+

K2
+

,
K1
−

K2
−

〉
, resulting from merging two version spaces V S1 = 〈P(M),P(M),⊆,

K1
+,K

1
−〉 and V S2 = 〈P(M),P(M),⊆,K2

+ ,K
2
−〉, are given as follows:

SV S = {s1 ∩ s2},

GV S = MIN

⋃
i,j

{q1
i ∪ q2

j}

 ,
where SV S1 = {s1}, SV S2 = {s2}, q1

i ∈ GV S1, q2
j ∈ GV S2, and the operator MIN(X) takes all

inclusion minimal sets from the family of sets ⊆.

The algorithmic aspects of computing the result of merging two version spaces are discussed in
general in [44]. In our particular case the complexity bounds are somewhat better. The obvious
worst-case bounds that follow from Statement 6.6 are as follows: the computation of the resulting
SVS takes O(|M |) time and the computation of the resulting GVS takes O(|M | × (|GV S1| ×
|GV S2|)2) time.

Consider Example 3.1 from the point of view of version spaces.
The minimal positive hypothesis

{B, con,dur}

AUTOMATION AND REMOTE CONTROL Vol. 62 No. 10 2001



1558 KUZNETSOV

w.r.t the goal attribute “high chain cost” is unique and, thus, covers all positive examples. Hence,
the minimal hypothesis constitutes the one-element set SVS. The most general positive classifier
for this problem (in this case it is also unique) has the form {B}.

This classifier is a relative proper premise w.r.t. a proper premise and at the same time a relative
pseudointent.

All classifiers w.r.t. the goal attribute range between the minimal hypothesis and proper
premises, so they are more general or equal to the former and less general or equal to one of
the latter.

The correspondence between version spaces and minimal hypotheses is valid only if there exists
a unique minimal hypothesis. If minimal hypothesis is not unique, then the version space in the
sense of definition above does not exist. For the description of this situation the construction called
disjunctive version space is used [66].

6.4. Hypotheses, Concept Lattices, and Decision Trees

Methods for constructing decision trees or classification trees were used by various researches
starting from 1960s and become widely known due to ID3 system [64] (see also review [12]). In
terms of formal contexts, before the construction of a decision tree the system gets a positive and a
negative context. The root of the tree corresponds to the beginning of the process and is not labeled.
Other vertices of the classification tree are labeled by attributes from M and edges are labeled by
values of the attributes (e.g., 0 or 1 in case of binary contexts), each leaf is additionally labeled by
a class + or −. The construction of the tree proceeds as follows. Starting from the root, for each
vertex and each attribute not studied above, the value of the information (antientropy) functional
is computed. The attribute that “most strongly” (w.r.t. the functional value) “separates” objects
from classes + and − is chosen. The process proceeds until the moment when all objects having
a given attribute and all attributes above it in the tree relate only to a single class (e.g., +) and
all attributes that do not have a given attribute (but have all attributes above in the tree) belong
to the opposite class (i.e., − in case of example above). Thus, the set of all attributes that occur
along the way from the root to a leaf corresponds to a sufficient condition that an object belongs
to a class + or −.

Consider the process of constructing a decision tree in the lattice of the learning context K± =
(G+ ∪ G−, M , I+ × {w} ∪ I−) more formally. The decision tree is given by a set of tuples {(mi,
mj , pj , nj, ε)}, where (mi,mj) corresponds to an arc in the tree between the vertex with attribute
mi and the vertex with the attribute mj; ε = 1 if mj was chosen for the continuation of the tree
and ε = 0 otherwise; pj corresponds to the number of positive examples with attributes mj , mi

and all attributes lying in the tree above mi; nj corresponds to the number of negative examples
with attributes mj, mi and all attributes lying in the tree above mi.

For an arbitrary set of attributes B ⊆ M by P (B) (N(B)) we denote the number of positive
(negative) examples that have the set of attributes B, i.e.,

P (B) = {g ∈ G+ | B ⊆ g+},
N(B) = {g ∈ G− | B ⊆ g+}.

The set of attributes B1 separates the classes not worse than the set of attributes B2 if either
P (B1) ≥ P (B2) and N(B1) ≤ N(B2) or P (B1) ≤ P (B2) and N(B1) ≥ N(B2).

Assertion 6.7. If P (B) ≥ N(B) holds for an arbitrary set B ⊆M then B++ separates the classes
not worse than B.
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Assertion 6.8. The path (mi1, . . . ,mik) from the root of the decision tree to a positive leaf corre-
sponds to the sequence (m±±i1 ,m±i1) ≥ . . . ≥ ({mi1, . . . ,mik}±±, {mi1, . . . ,mik}±) of lattice elements,
where {mi1, . . . ,mik}±± \ {w} is a positive hypothesis.

Note that the members of the sequence of lattice elements from the Statement are not necessarily
neighbors in the lattice diagram. For data from Example 3.1 the best separating attribute is mount,
which strictly separates positive examples (that all have value B) and negative examples (that all
have value F). Thus, in this case the path from the root of the tree to the leaf has length 1.

7. ALGORITHMIC PROBLEMS OF GENERATING CONCEPTS,
HYPOTHESES AND CLASSIFICATIONS

In this section we review the main results about algorithmic complexity of generating sets of
formal concepts, hypotheses, and classifications. First note that the number of formal concepts
of a given formal context may depend exponentially on the size of context as, e.g., in case of the
context K = (G,G, 6=), which gives rise to a Boolean concept lattice. Moreover, as shown in
[9, 49], the problem of determining the number of all formal concepts of a given formal context
is #P-complete. Recall that the class #P of enumeration problems is defined by the counting
nondeterministic Turing machine and #P-completeness is defined w.r.t. Turing reducibility [69,
70], see also [7]. By the basic theorem of FCA, #P-completeness of counting the number of all
formal concepts implies that the problem of determining the size of a finite lattice given by an
ordered set of its meet- and join-irreducibles is also #P-complete. An obvious corollary of this
result is also #P-completeness of the problem of counting all hypotheses of a learning context.
Moreover, one can show that the problem of counting all minimal hypotheses is also #P-complete.
The proof of this fact that uses graph-theoretic interpretation of hypotheses is given in [11].

Algorithmic complexity of some decision problems about existence of a concepts with certain size
constraints are presented in Table 7.1, where P denotes the existence of a polynomial algorithm,
NP denotes NP-completeness. Thus, the left upper entry of the table denotes that the problem
“does there exist a formal concept (e, i) with |e| < k” has a polynomial decision algorithm.

Complexity results concerning decision problems related to existence of a hypothesis h with
similar size constraints are given in Table 7.2. As in Table 7.1 the entry P denotes here the
existence of a polynomial algorithm and NP denotes NP-completeness.

The above #P -complete and NP-complete problems about positive hypotheses become polyno-
mially solvable, e.g., in the case where formal intents of positive examples are bounded from above
by a constant k (i.e., |{g}+| ≤ k for all g ∈ G+). In this case the number of all positive concepts
is O(|M |k). Therefore, an algorithm is possible that can generate all positive concepts and test
whether their intents are hypotheses in time polynomial in |G+|, |G−| and |M |. Similar situation
takes place in the case where the sizes of formal extents of attributes are bounded from above by
a constant.

As for the algorithmic complexity of classification, it should be noted first that the problem about
the existence of a hypothesis in favor of classification of an undetermined example is NP-complete.

Table 7.1

≤ = ≥
|i| P NP P

|e| P NP P

|e|+ |i| NP NP P

Table 7.2

≤ = ≥
|h| NP NP P

|h+| P NP NP

|h+|+ |h| NP NP NP
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The proof of this result is based on the reduction of the problem of domination over parts in a
quadripartite graph to the problem of classification. By the symmetry of (−)- and (+)-hypotheses,
this implies that the problem of determining that “there does not exist a (−)-hypothesis in favor
of negative classification of gτ” is coNP-complete (i.e., complete in the class dual to NP, see [7])
and hence, the problem “whether the undetermined example gτ ∈ Gτ” is classified positively is
∆p-complete (the class ∆p was defined in [59]).

Note that in one of the following cases, where
• V1 = ∅ (M = {gτ}τ ) or
• V2 = V3 (G+ = {gτ}τ ) or
• V1 = ∅ (G− = ∅: the quadripartite graph becomes a tripartite),

there exists a polynomial algorithm for the classification of an undetermined example in a given
classification contextKc = (G+ ∪G− ∪Gτ ,M ∪ {w}, I+ ∪ I− ∪ Iτ ∪G+ × {w}).

A polynomial algorithm for the solution of the problem is also possible when the size of the set
{gτ}τ is bounded from above by a constant. A constraint of this kind is justified in various practical
applications, e.g., in the “Structure–Activity Relation” problem, where the goal attribute w cor-
responds to a certain biological activity, and classification denotes prediction whether a chemical
compound has this activity [6]. It can be considered that the size of a compound is bounded by a
constant when a series of classifications of a single compound is made and the sets of examples and
attributes (i.e., elements of the set M) are growing. General algorithms for hypotheses generation
are given in [8, 13, 48]. In [5] we gave an algorithm for the generation of generalized hypotheses.

A trivial algorithm for solving a classification problem in polynomial time by sequentially testing
all subsets of the set {gτ}τ , by computing their closures (i.e., applying the operator ++ to them) and
testing the containment of these closures in intents of negative examples. When a positive formal
intent that is not a subset of any negative example is found, the algorithms proceeds similarly on
negative examples. The time complexity of this algorithm is O(2|{gτ}

τ | × (|G+| + |G−|) × |M |).
A more efficient algorithm based on the Close-by-One algorithm is described in [13, 48].

Now we consider algorithms for generation of formal concepts, hypotheses, and implication
bases.

Over dozen of algorithms for generation of the set of all formal concepts is known. One of the
first of them is found in [26, 57]. The first two reviews and experimental comparisons are found in
[42, 40], the last and most complete review is found in [50].

Due to the fact that the number of formal concepts can be exponential in the size of a formal
context, the worst-case time complexity of algorithms for generation of formal concepts is expo-
nential in the input size (the size of context), it is reasonable to estimate the time complexity of
algorithms as a function of the output size (i.e., of the number of formal concepts) or in terms of
cumulative polynomial delay. Recall that an algorithm listing a family of objects has a delay d if
it satisfies the following conditions whenever it is run with an input of size p [46]:

1. It executes at most d(p) computation steps before either outputting the first structure or
halting;

2. After any output it executes at most d(p) computation steps before either outputting the
next structure or halting. An algorithm whose delay is bounded from above by a polynomial in
the length of the input is called a polynomial delay algorithm [46].

A weaker notion of efficiency of listing algorithms was proposed in [41]. An algorithm is said
to have a cumulative delay d if it is the case that at any point of time in any execution of the
algorithm with any input p the total number of computation steps that have been executed is at
most d(p) plus the product of d(p) and the number of structures that have been output so far. If
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d(p) can be bounded by a polynomial of p, the algorithm is said to have a polynomial cumulative
delay.

Batch algorithms presented in [24, 33, 35, 13, 31] are algorithms with polynomial delay that
does not exceed (|G|3 × |M |). Their worst-case time complexity is O(|B(K)| × |G|2 × |M |).

Algorithms described in [57, 58] are incremental. They cannot have polynomial delay since the
arrival of a next object brings about the update of the set of formal concepts generated before.
However these are algorithms with polynomial cumulative delay. The algorithm from [58] has the
best worst-case estimate as a function of the number of formal concepts and input size: O(|B(K)|×
|G| × (|M |+ |G|)) (recall that |B(K)| denotes the size of the lattice of formal concepts B(K), i.e.,
the number of all formal concepts of the formal context K).

Algorithms from [26, 8, 40] are not algorithms with polynomial delay and their worst-case
complexity is a function quadratic in the number of formal concepts (within a factor polynomial
in |G| and |M |).

The algorithms generating formal concepts are easily adapted for the generation of hypotheses:
it suffices to add the test for containment of each new formal intent in intents of negative examples.
The arising change in the worst-case complexity is inessential. For example, the complexity of the
algorithm for generating hypotheses from [48] is O(|B(K+)| × (|G+|+ |G−|)× |G+| × |M |).

The adaptation of algorithms for computing classifications is also easy: one needs an additional
test for containment of hypotheses in the intent of the undetermined example to be classified.

As for the generation of the minimal implication basis, its algorithm was described in [32, 34].
Its complexity is exponential in the input size even in the case of empty output, i.e., when there is
no nontrivial implications, as for example, in the case of the formal context (G,G, 6=), which gives
rise to the Boolean concept lattice. A more efficient algorithm, as well as a good estimate of the
base size and the algorithmic complexity of computing this number are not known.

8. CONCLUSION

We considered mathematical models of machine learning and data analysis in terms of Formal
Concept Analysis. The main attention was drawn to the JSM-method of automated hypotheses
generation, its lattice-theoretic and graph-theoretic interpretations. We showed the relation of the
JSM-method to the well-known domains in data analysis and artificial intelligence: implications in
FCA, search for functional dependencies in data bases, version spaces, decision trees, data mining
and knowledge discovery. We also studied the problems of algorithmic complexity of generating
concept lattices, implication bases, hypotheses, and classifications.
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