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Abstract

We develop the means to mine for associative features in biological data. The hybrid reasoning schema for deterministic machine
learning and its implementation via logic programming is presented. The methodology of mining for correlation between features is illus-
trated by the prediction tasks for protein secondary structure and phylogenetic profiles. The suggested methodology leads to a clearer
approach to hierarchical classification of proteins and a novel way to represent evolutionary relationships. Comparative analysis of Jas-

mine and other statistical and deterministic systems (including Explanation-Based Learning and Inductive Logic Programming) are out-
lined. Advantages of using deterministic versus statistical data mining approaches for high-level exploration of correlation structure are
analyzed.
� 2006 Elsevier Inc. All rights reserved.
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1. A hybrid deterministic reasoning technique

In many scientific areas, including bioinformatics, data
are being generated at a faster pace then it can be effectively
analyzed. Therefore, the possibility to automate the scien-
tific discovery process is of both theoretical and practical
value. In this paper we present the system Jasmine which
automatically generates hypotheses to explain observa-
tions, verifies these hypotheses by finding the subset of data
satisfying them, falsifies some of the hypotheses by reveal-
ing inconsistencies and finally derives the explanations for
the observations by means of cause–effect links [12].

Analyzing biological data, it is of crucial importance not
just to reveal correlations between biological parameters,
but also to find interpretable causal links between them.
Most of the time, the machinery of statistical inference
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allows the former but runs into difficulties with the latter.
Non-uniform, statistically distorted and incomplete biolog-
ical data in bioinformatics, extracted from various sources,
is frequently intractable to immediate statistical analysis
which would deliver an adequate explanation of phenomena.
In response to this problem, special non-statistical tech-
niques have been developed to tackle a wide variety of
problems in bioinformatics [9,10,20], and Jasmine, the
system to be presented here, extends this approach.

A traditional characterization of scientific methodology
is the ‘‘hypothetico-deductive’’ process. Firstly, scientific
knowledge, intuition and imagination yield plausible
hypotheses, and then the deductive conjectures of these
hypotheses are verified experimentally [6,22]. Jasmine

extends this methodology by implementing (i) a combina-
tion of abductive, inductive and analogical reasoning for
hypotheses generation and (ii) multi-valued logic-based
deductive reasoning for verification of their consistency
and coverage of the domain (compare with [11,36]). For-
mally, all the above components can be represented as
deductive inference via logic programming [1,5,26].
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In contrast to statistical approaches, Jasmine represents
domain knowledge in the form of an ontology. This pro-
vides the means both for direct inspection of biological
knowledge in the model and for inference of predictions.

In keeping with most hypotheses generation strategies
used in modern biology [11], Jasmine uses abductive rea-
soning in addition to its deductive and inductive capabili-
ties. These abductive processes generate specific facts
about biological entities, while general hypotheses are
delivered by deductive and inductive procedures.

In this paper, results of data mining can be thought of
effects (goal concepts) because of the structure of inter-de-
pendencies between those features which are known and
those which are subject to prediction. Making a prediction,
Jasmine explicitly indicates which objects and which fea-
tures delivered this prediction. Therefore in our prediction
settings, objects and their features that deliver prediction
are considered causes (because they are explicitly localized);
the object’s predicted feature can be thought of as an effect.
Indeed, causes may not imply effects in a physical sense;
however the metaphor is useful because it highlights the
explanatory property of a prediction delivered by Jasmine.
It is important to differentiate Jasmine’s prediction settings,
which comprise a hypotheses management environment,
from pure accuracy-oriented prediction settings. The objec-
tive in the design of Jasmine is not simply to raise recogni-
tion accuracy, but to identify sets of features and their
inter-relations in logical form, which in turn raise the rec-
ognition quality. Note also that a prediction direction
(the roles of being a known feature and a goal concept)
in Jasmine settings is easily reversed.

In terms of its deterministic methodology of prediction
and implementation via logic programming, Jasmine’s

approach is close to those of Inductive Logic Programming
(ILP) [20] which has been applied in management hypoth-
eses in bioinformatics quite successfully, and Explanation-
Based Learning (EBL) [39,40] class of methods which are
intended to derive as general expressions as possible from
available data.

EBL has been deployed in forming rules while observing
a human expert, decision-making and advising systems in
rather compact domains. One of the motivations for this
project is to deploy the power of EBL, expressiveness of
its representations and delivery of explanation (which is
essential for understanding the underlying mechanisms)
for more extensive and less structured domains such as bio-
informatics. Therefore the desired reasoning machinery of
Jasmine should be able to accommodate noisy and scarce
date, a lack of an adequate domain theory, or its bioinfor-
matics-specific deficiencies such as problems with complete-
ness, correctness and tractability. To achieve this, we use
more cautious prediction settings to decrease the number
of false negatives and iterative application of induction–ab-
duction procedure on the one hand, and provide an inter-
active environment to visualize explanations on the other
hand. Furthermore, unlike the EBL approach, Jasmine

uses negative examples to falsify hypotheses that have
counter-examples. Also, defeasible logic programming
[42] is integrated into Jasmine to provide a machinery to
dynamically accept and reject hypotheses that have been
assigned the status of ‘‘defeasible’’ at the knowledge base
construction step.

The rest of the present paper is organized as follows. In
Section 1 we introduce the specific problem of protein sec-
ondary structure prediction and outline the knowledge
domain which will be a subject of reasoning. We then
describe the reasoning schema using the reduced dataset
of immunoglobulin proteins in Section 2, followed by Sec-
tion 3 which describes the computation of similarity for
obtaining causal links. Section 4 shows how Jasmine pre-
dicts the length of certain protein fragments and helps to
find the physically plausible explanation for these predic-
tions. In Section 5 Jasmine is applied to the problem of
mining evolutionary profiles, where an original structure
of causal links between occurrences of protein groups in
biological species is obtained.

2. Introductory example: predicting the secondary structure

of immunoglobulins

We illustrate how Jasmine tackles the biological prob-
lem where micro-level features lead to the macro-level goal
concepts. The problem in our general terms is posed as a
prediction of macro-level effects given the micro-level data.
The micro-level features comprise the protein residues
(amino acids in certain positions), and the macro-level is
the secondary structure of a protein. The secondary struc-
ture of a protein contains information on how a sequence
of amino acids is divided into fragments (strands, loops
and helices in 3D space). Evidently, individual amino acids
determine the secondary structure by means of ‘‘collective
behavior’’ whose direct simulation is not computationally
feasible (e.g. [47]). Prediction of secondary structure is an
important step on the way of 3D structure prediction, cru-
cial in a number of biomedical applications.

To illustrate the prediction of the secondary structure of
the immunoglobulin family with Jasmine, we select the
training dataset of sequences, where the variable length
of certain loop fragments is dependent on the residues of
other fragments. We form our dataset from the set of
immunoglobulin sequences of variable domain, heavy
chains [7]. The purpose of our analysis is to predict such
secondary structure features of protein sequences as length
(number of residues) of the certain loops (we select CC 0

and CB). It is expected that various residues in protein
sequences affect these lengths, and we will use Jasmine to
help us discover such residues and the way they can
determine the lengths of CC 0 and CB loops.

For example, 19th position of the alignment is the 3rd
position of B-keyword. B3 = R or K for the first B-key-
word, and B3 = S or T for the second B-keyword. The
whole B-keywords are as follows: S [L or V] [R or K] [L
or V or I] [S or T] C X [G or A] and T [L or V] [S or T]
[L or V or I] [S or T] C X [I or V].
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Before we apply the deterministic machine learning, the
hierarchical clustering approach is used to decrease the
data dimension. To find inter-connections between residues
in a sequence of 100 amino acids long, we divide the multi-
ple sequence alignment into 21 fragments to search for cor-
relation among these fragments rather than on the level of
residues. After that, we divide the fragments of sequences
into clusters, and use Jasmine to find correlation between
these clusters. Jasmine is capable of operating with raw
data; however, it would be much harder to take advantage
of Jasmine’s results if it is fed with original data containing
1000 aligned sequences of about 100 amino acids.

We proceed to the illustration of our data pre-process-
ing for Jasmine. We start with the aligned protein
sequences:
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Notice that sequence fragments which deviate by amino
acids of the same group (e.g. G-A, L-V) belong to the same
cluster (B-fragments SLRLSCHG and SVRLSCJA, the
seventh position is any residue X). Having performed the
clustering, one observes the correlation between residues,
for example, first and sixth in the sequence, 0A1 and A3
(shown in bold):

0A1 ¼ ‘Q’$ A3 ¼ ‘E’

0A1 ¼ ‘E’$ A3 ¼ ‘Q’

Table 1 presents typical representatives for each cluster
(keywords) and encodes them by numbers. Table 1 indi-
cates that the sequences within each fragment fall into
one to six clusters [7,8]. Now we can attempt to predict sec-
ondary structure given cluster numbers instead of original
sequence residues. Having significantly reduced the feature
ion,
ach
ues

ters.
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space, we can expect to reveal rules and data correlation
which are interpretable by a human expert.

A convenient way to represent the totality of sequence in
the dataset is shown in Fig. 1, where the sequences are
encoded in cluster numbers. The two-level classification
were suggested in [8] to show the diversity of sequences
of cluster numbers as a classification tree. Each node of a
tree is a unique combination of cluster numbers; fragment
E is chosen as the first-level classification criterion, and
fragments {0A, A, A 0, F} as the second level criterion. In
accordance to the selected classification criteria, for each
class, the selected classifying fragments determine not only
the rest of fragments, but the number of residues in the
loop fragments (in the way presented in Fig. 1). In such
form, the data is well-prepared for applying Jasmine.

For example, the above two sequences belong to two
paths of the classification tree. The first one belongs to
the second class along with its only subclass (amino acids
are subscribed at the classification tree). The second
sequence belongs to the fourth class and its first subclass.
It turns out that both these sequences have the same
lengths of CC 0 = 5 and CB = 5.

Hence we formed the reduced feature space for such
objects as protein sequences and specified the goal concept
as the lengths of two loop protein regions, CC 0 and CB.
This is the environment to introduce the reasoning proce-
dure that will discover the links between the features of
objects and the goal concept. In the following sections,
we will see whether these links obtained manually in the
form of classification tree, can be treated in a more system-
atic way by means of automated reasoning.
Fig. 1. The classification graph for immunoglobulin sequences, encoded via
fragments 0A–A –A 0–F are the criteria to divide into subclasses. Each subclass h
fragments which are the subjects of prediction. Exploration of the links between
interconnection pattern between the fragments with physical plausibility: fragm
3. A reasoning schema

Jasmine is based on a learning model called JSM-
method [5] (in honor of John Stuart Mill, the English phi-
losopher who proposed schemes of inductive reasoning in
the 19th century). JSM-method to be presented in this sec-
tion implements Mill’s idea [16] that similar effects (associ-
ated features, goal concepts) are likely to follow common
causes (attributes).

In this paper, rather than presenting JSM in relation to
Inductive Logic Programming class of approaches, we use
the Explanation-based Learning (EBL) framework to
introduce our reasoning schema. Like EBL, JSM attempts
to solve the problem of inductive bias [37], a means to select
one generalization over another.

Given the features of objects, we intend to obtain an

expression for the goal concept that includes all positive
examples and excludes all negative examples, given some
initial formalized background knowledge. In the EBL set-
ting (justified generalization [39]) the expression for the
goal concept is a logical consequence of background
knowledge and training dataset; however, this condition
is not always viable in a domain with experimental obser-
vations. EBL is designed to generalize form a single exam-
ple; however, in biological domains one would prefer more
reliable conclusions from multiple observations. These
multiple observations (examples) may introduce inconsis-
tencies; and the desired machine learning technique should
be capable of finding consistent explanations linking possi-
bly mutually inconsistent observations with the goal
concept.
cluster numbers. Fragment E is the criterion for division into classes;
as a specific length of the complimentary determining region (CDR, [8,23])
fragments for various prediction settings leads to the discovery of a novel
ents E, 0A,A, A 0 and F have a special role in protein folding process [8].
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Like EBL, the Jasmine environment includes the train-
ing examples (objects), operational criterion (a description
of which concepts are usable), a domain theory (a set of
rules that describe relationships between objects), and a
goal concept which is the subject of prediction. Within Jas-

mine first-order language, objects are atoms, whereas
known features and the goal concept are the terms which
include these atoms. For a goal concept, there are four
groups of objects with respect to the evidence they provide
for this goal concept:

Positive–Negative–Inconsistent–Unknown:

An inference to obtain this goal concept (satisfied or
not) can be represented as one in a respective four-valued
logic [1]. The predictive machinery is based on building
hypotheses,

goal conceptðOÞ : - feature1ðO; . . .Þ; . . . ; featurenðO; . . .Þ;
that separate examples;

where goal_concept(O) is to be predicted, and features1,
. . ., featuren 2 features are the features the goal concept is
associated with; O ranges over objects.

Desired separation is based on the similarity of objects
in terms of features they satisfy. Usually, such similarity
is domain-dependent. However, building the general
framework of inductive-based prediction, we use the anti-
unification of formulas that express the totality of features
of the given and other objects (our features (causes) do not
have to be unary predicates; they are expressed by arbitrary
first-order terms).
iPosðU ; V Þ : - rawPosðX 1; V Þ; rawPosðX 2; V Þ;X 1n ¼ X 2; similarðX 1;X 2;UÞ;Un ¼ ½�:
iPosðU ; V Þ : - iPosðU1; V Þ; rawPosðX 1; V Þ; similarðX 1;U1;UÞ;Un ¼ ½�:

ð1Þ
JSM-prediction is based on the notion of similarity
between objects. Similarity between a pair of objects is a
hypothetical object which obeys the common features of
this pair of objects. In handling similarity JSM is close to
Fig. 2. A sample knowledge base for high-
Formal Concept Analysis [3,30], where similarity is the meet

operation of a lattice (called concept lattice). For Jasmine

we choose the anti-unification of formulas which expresses
features of the pair of objects to derive a formula for simi-
larity sub-object. Below we will be using the predicate

similar(Object1, Object2, CommonSubObject) which
yields the third argument given the first and the second
arguments.

We start with an abstract example of Jasmine setting,
based on the secondary structure prediction of immuno-
globulin proteins from Section 1 above. In the section
below we will comment on the meanings of involved fea-
tures and goal concepts. Our introductory example of
JSM settings for unary predicate is as follows (from now
on we use the conventional PROLOG notations for vari-
ables and constants), Fig. 2.

We start our presentation of reasoning procedure with
the chart (Fig. 3), followed by the logic program represen-
tation. Let us build a framework for predicting the goal
concept V of objects set by the formulas X expressing their
features: unknown(X, V). We are going to predict whether
V(x1, . . . xn) holds or not, where x1, . . . xn are variables of
the formula set X (in our example, X = cb5(o10),
x1 = o10).

We start with the raw data, positive and negative exam-
ples, raw Pos(X, V) and rawNeg(X, V), for the goal con-
cept V, where X range over formulas expressing features of
objects. We form the totality of intersections for these
examples (positive ones, U, that satisfy iPos(U, V), and
negative ones, W, that satisfy iNeg(W, V), not shown):
Above are the recursive definitions of the intersections. As
the logic program clauses which actually construct the lat-
tice for the totality of intersections for positive and nega-
tive examples, we introduce the third argument to
level mining of protein sequence data.



Finding the totality of 
intersections between features 
of all objects (positive) 

Finding the totality of 
intersections between features 
of all objects (negative) 

Among the above 
intersections, select  those 
which describe only positive 
objects 

Among the above 
intersections, select those 
which describe only 
negative objects 

Form positive hypotheses 
from the above intersections

Form negative hypotheses 
from the above intersections

Instantiate 
positive 
hypotheses by 
objects 

Obtaining objects 
with unknown target 
which satisfy both 
positive and 
negative hypotheses 

Instantiate 
negative
hypotheses by 
objects 

Obtaining objects with 
unknown target which
satisfypositive hypotheses 

Obtaining objects with 
unknown target which
satisfynegative hypotheses 

Remaining objects with unknown 
target: inconsistent prediction 

1

2

3

4

Add obtained prediction into domain theory 
as defeasible clauses and attempt to resolve
inconsistencies

Fig. 3. The chart for reasoning procedure of Jasmine. Note that the prediction schema is oriented to discover which features cause the goal concept and
how (the causal link) rather than just searching for common features for the goal concept (which would be much simpler, six units on the top). The
respective clauses (1–4) and sample results for each numbered unit (1–4) are presented in Fig. 4.
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accumulate the currently obtained intersections (the
negative case is analogous):
iPosðU ; V Þ : - iPosðU ; V ; Þ:
iPosðU ; V ;AccumsÞ : - rawPosðX 1; V Þ; rawPosðX 2; V Þ;X 1n ¼ X 2; similarðX 1;X 2;UÞ;

Accums ¼ ½X 1;X 2�;Un ¼ ½�:
iPosðU ; V ;AccumsX 1Þ : - iPosðU1; V ;AccumsÞ; !; rawPosðX 1; V Þ;

not memberðX 1;AccumsÞ; similarðX 1;U1;UÞ;Un ¼ ½�;
appendðAccums; ½X 1�;AccumsX 1Þ:
As one can see, there is a ‘‘symmetric’’ treatment of positive
and negative examples and hypotheses: Jasmine uses nega-
tive examples to falsify hypotheses that have counter-exam-
ples. On the contrary, a simplified EBL uses only positive
examples and can be viewed as just the ‘‘left half’’ of Fig. 3.

To obtain the actual positive posHyp and negative
negHyp hypotheses from the intersections derived above,
we filter out the inconsistent hypotheses which belong to
both positive and negative intersections inconsHyp

(U, V):

inconsHypðU ; V Þ : - iPosðU ; V Þ; iNegðU ; V Þ:
posHypðU ; V Þ : - iPosðU ; V Þ; not inconsHypðU ; V Þ:
negHypðU ; V Þ : - iNegðU ; V Þ; not inconsHypðU ; V Þ: ð2Þ
Here U is the formula expressing the features of objects. It
serves as a body of clauses for hypotheses V :- U.
The following clauses deliver the totality of objects so
that the features expressed by the hypotheses are included

in the features of these objects. We derive positive and neg-
ative hypotheses reprObjectsPos(X, V) and reprObjects-

Neg(X, V) where X is instantiated with objects (V is
positive and negative respectively). The last clause (with
the head reprObjectsIncons(X, V)) implements the search
for the objects to be predicted so that the features expressed
by both the positive and negative hypotheses are included
in the features of these objects.
Two clauses above (top and middle) do not participate in
prediction directly; their role is to indicate which objects
deliver what kind of prediction. This form of analysis will
be illustrated in Section 5, Fig. 6 (Jasmine user interface).



reprObjectsPosðX ; V Þ : - rawPosðX ; V Þ; posHypðU ; V Þ; similarðX ;U ;UÞ:
reprObjectsNegðX ; V Þ : - rawNegðX ; V Þ; negHypðU ; V Þ; similarðX ;U ;UÞ:
reprObjectsInconsðX ; V Þ : - unknownðX ; V Þ; posHypðU1; V Þ; negHypðU2; V Þ;

similarðX ;U1;U1Þ; similarðX ;U2;U2Þ:

ð3Þ
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Finally, we approach the clauses for prediction. For the
objects with unknown goal concepts, the system predicts
that they either satisfy these goal concepts, do not satisfy
these goal concepts, or that the fact of satisfaction is incon-
sistent with the raw facts. To deliver V, a positive hypoth-
esis has to be found so that the set of features X of an
object has to include the features expressed by this hypoth-
esis, and X should not be from reprObjectsIncons(X, V).
To deliver �V, a negative hypothesis has to be found so
that a set of features X of an object has to include the fea-
tures expressed by this hypothesis and X is not from repr-

ObjectsIncons(X, V). No prediction can be made for the
objects with features expressed by X from the third clause,
The first clause above (shown in bold) will serve as an entry
point to predict (choose) a given goal concept among a
generated list of possible goal concepts that can be
obtained for the current state. The clause below is an entry
predictInconsðX ; V Þ:
predictPosðX;VÞ : - unknownðX ; VÞ; posHypðU ; VÞ; similarðX ; U ;UÞ;

not reprObjectsInconsðX ; VÞ:
predictNegðX ; V Þ : - unknownðX ; V Þ; negHypðU ; V Þ; similarðX ;U ;UÞ;

not reprObjectsInconsðX ; V Þ:
predictInconsðX ; V Þ : - unknownðX ; V Þ; not predictPosðX ; V Þ; not predictNegðX ; V Þ; not reprObjectsInconsðX ; V Þ:

ð4Þ
point to Jasmine if it is integrated with other applications
and/or reasoning components.
Predicate loadRequiredSamples(As) above forms the train-
ing dataset. If for a given dataset a prediction is inconsis-
tent, it is worth eliminating the objects from the dataset
which deliver this inconsistency. Conversely, if there are
predict goal concept by learningðGoalConceptToBePredicted; SÞ : �
findAllPossibleGoalConceptsðS;AsÞ; loadRequiredSamplesðAsÞ;
memberðEffectToBePredicted ;AsÞ; predictPosðX ;GoalConceptToBePredictedÞ;Xn ¼ ½�:
an insufficient number of positive or negative objects, addi-
tional ones are included in the dataset. A number of itera-
tions may be required to obtain a prediction, however the
iteration procedure is monotonic and deterministic: the
source of inconsistency/insufficient data cases are explicitly
indicated at the step where predicates reprObjectsPos and
reprObjectsNeg introduced above are satisfied. This is the
solution to the so called blame assignment problem, where
by starting at the erroneous or inconsistent conclusion and
tracking backward through the explanation structure, it is
possible to identify pieces of domain knowledge that might
have caused an error or inconsistency [43].

When the set of obtained rules posHyp and negHyp for
positive and negative examples (together with the original
domain theory) is applied to a more extensive (evaluation
or exploration) dataset, some of these rules may not always
hold. If at the first run (1–4) Jasmine refuses to make predic-
tions for some objects with unknown goal concepts, then a
repetitive iteration may be required, attempting to use newly
generated predictions to obtain objects’ goal concepts which
are currently unavailable (compare with [44]). The arrows on
the right of Fig. 3 illustrate this kind of iterative process.

For example, for the knowledge base Fig. 2 above, we
have the following protocol and results (Fig. 4).

Hence cb5(o10) holds, which means that the sequence
o10 has the length of loop of five amino acids.
4. Computing similarity between objects

The quality of Jasmine-based prediction is dramatically
dependent on how the similarity of objects is defined. Usu-
ally, high prediction accuracy can be achieved if the mea-
sure of similarity is sensitive to object features which
determine the goal concept (explicitly or implicitly). Since
most of times it is unclear in advance which features affect
the goal concept, the similarity measure should take into
account all available features. If the totality of selected
features describing each object is expressed by formulas,
a reasonable expression of similarity between a pair of
objects is the following. It is a formula which is the least
common generalization of the formulas for both objects,
which is anti-unification, mentioned in the previous



Fig. 4. The Jasmine prediction protocol. Steps are numbered in accordance to the units at Fig. 3.
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section. Anti-unification is the inverse operation to the uni-
fication of formulas in logic programming. Unification is
the basic operation which finds the least general (instantiat-
ed) formula (if it exists), given a pair of formulas. Anti-uni-
fication was used in [21] as a method of generalization; later
this work was extended to form a theory of inductive gen-
eralization and hypothesis formation. Anti-unification, in
the finite term case, was studied as the least upper bound
operation in a lattice of terms [3,30].

For example, for two formulas p(a, X, f(X)) and p(Y,
f(b), f(f(b))) their anti-unification (least general generaliza-
tion) is p(Z1, Z2, f(Z2)). Conversely, unification of this for-
mulas, p(a, X, f(X)) = p(Y, f(b), f(f(b))) will be p(a,

f(b), f(f(b))). Our logic programming implementation
of anti-unification for a pair of conjunctions, which can
be customized to a particular knowledge domain, is pre-
sented at Fig. 5.

Although the issue of implementation of the anti-unifi-
cation has been addressed in the literature (e. g. [33,35]),
we present the full code to have this paper self-contained.
In a given domain, additional constraints on terms can
be enforced to express a domain-specific similarity. Partic-
ularly, certain arguments can be treated differently (should
not be allowed to change if they are very important, or
should form a special kind of constant). A domain-specific
code should occur in the line shown in bold.
The simplest way to express similarity between objects is
to use attribute features. For example, to express a similar-
ity between amino acids, we use their attributes such as
polarity and hydrophobic properties. These attributes
may be specific to a narrow domain of analysis (immunogl-
obilins in our example, [23]). If one prefers to have a stron-
ger control over comparison of similar and distinct
attributes of amino acids, additional terms should be intro-
duced to express these attributes. In our example of amino
acids, if one considers hydrophobic and hydrophilic amino
acids as ones which do not have any similarity,

hydrophobicðother attribute1; . . . ; other attribute2Þ
and hydrophylicðother attribute1; . . . ; other attribute2Þ

predicates should be used. Instead of residue(sequence)

terms one would use

residueðsequence;hydrophobicðother attribute1; . . . ;other attribute2ÞÞ

to take into account hydrophobicity as a potential cause of
certain property of a protein. Such predicates will then be
treated as desired by the anti-unification procedure.
Moreover, predicates for relations between objects are natu-
rally accepted by Jasmine framework. As only we explicitly
incorporated hydrophobicity into our object representation,
it cannot be reduced to the attribute-value logic settings.



Fig. 5. The clauses for logic program for anti-unification (least general generalization) of two formulas (conjunctions of terms). Predicate antiUnify (T1,

T2, Tv) inputs two formulas (scenarios in our case) and outputs a resultant anti-unification.
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There are other Jasmine-compatible approaches to com-
puting similarities except the anti-unification. In particular,
it is worth mentioning the graph-based approach of finding
similarities between chemical substances [2]. The operation
of finding the maximum common subgraphs serves the pur-
pose of anti-unification in such the domain. This operation
was subject to further refinement expressing similarities
between scenarios of multi-agent interaction, where it is
quite important to take into account different roles of edges
of distinct sorts.

Novice users of Jasmine are advised to start building the
similarity operation as an intersection between objects’ fea-
tures (unordered set of features) and obtain an initial pre-
diction. Then, when the explanations for predictions are
observed, the users may feel that less important features
occur in these explanations too frequently, and anti-unifi-
cation expression should be introduced so that less impor-
tant features are nested deeper into the expressions for
objects’ features. Another option is to build a domain-spe-
cific Prolog predicate which computes unification, intro-
ducing explicit conditions for selected variables (bold line
at the Fig. 5).

5. Applying Jasmine to the prediction of secondary structure
of proteins

Now we are ready to outline the Jasmine representation
language for this domain, which has been introduced in
Section 2 as an example of Jasmine reasoning. The fact
(cause) that for a sequence o2 the fragment e is cluster 1
(e.g. TLYLQMN, Table 1) is expressed as e1(o2). Analo-
gously, the fact that the fragment CB of the same sequence
o2 is five amino acids long (the goal concept) is expressed
as cb5(o2). The reader may suggest terms e(o2,1) and
cb(o2, 5) instead, but such generalization needs to be done
in a more intricate way to suite anti-unification operation
over the respective terms. Note that since the predicates
are not always unary, our settings are irreducible to attri-
bute-value logic. Since we have a limited number of values
for cluster numbers and fragment length, we use unary
predicates for clarity.

Being a built-in solver of inverse problems, Jasmine is
capable of finding the optimal classification structure for
a refined dataset. A classification is optimal if classifying
criteria allow achieving the highest possible precision of
the data being classified (when an object is related to a
class, its features are predicted with the highest accuracy).
In terms of graph topology, this means a minimum number
of common sub-classes for classes, common sub-subclasses
for sub-classes, etc. In a general situation the optimality of
the classification graph should be measured in terms of
amount of inconsistencies between the data components
(ambiguous classification), as well as prediction accuracy
(compare with [24]).

In the domain of proteins, the main predication problem
is how a sequence of amino acid residues causes the protein
to fold in a certain way. This problem can be solved by
physical simulation only for short sequences, therefore
machine learning needs to be involved. Currently, the most
efficient approaches to fold recognition are statistical



Table 2
Evaluation of recognition accuracy improvement by Jasmine

Relating a sequence to a class using: Data sets (protein families) Average accuracy improvement

Heavy chain variable
domain

Light chain variable
domain

Mouse Human Mouse Human

Homology method 5.4 6.2 7.3 8.1 1
Hierarchical classification method 11.1 11.3 12.7 12.2 1.75
Optimized hierarchical method using Jasmine 13.5 13.7 13.8 14.1 2.04
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(including SVM); however they do not help to understand
the mechanisms of how individual residues affect the fold.

Searching through a variety of ‘‘known features fi goal

concepts’’ models in terms of consistency of generated
hypotheses, Jasmine has delivered the set of classification
criteria which were initially obtained manually, taking into
account the spatial locations of immunoglobulin strands.
Jasmine independently confirms the classification structure
obtained using additional (physical) knowledge about our
dataset. Therefore, in the case of immunoglobulins, the
Jasmine-assisted search for clearer causal links generates
such additional knowledge!

Let us refer again to Fig. 1 for the example of reasoning
settings which lead to the construction of the classification
graph. We select the positive target jC 0C00j = 5 and search
for hypotheses which could serve as criteria for this target.
The negative target cases are sequences when the length of
jC 0C00j is more or less than five amino acids. Following the
reasoning protocol similar to the one depicted at Fig. 4, we
look for the features (values at the nodes of the classifica-
tion graph) which are common for the positive objects,
and are not common for the negative objects. We observe
that A 0 = 3 at the subclass level is common for all positive
examples (first two subclasses at the top of Fig. 4), and are
not common (although occurs in the third subclass) for
negative examples.

Also, at the subclass level, F = 1 is common between
the positive objects; however, it is also common for the
two subclasses of the third class (E = 3); therefore
F = 1 cannot serve as a jC 0C00j criterion. Analogously,
all targets (predication results at Fig. 1) were analyzed,
and the classification tree is built including as much
desired criteria (confirmed hypotheses) as possible for
the given dataset. Notice that the clustered-based values
can be interpreted via amino acids (AA 0 = 1 means
AA 0 is SG (G or A)).

We initiate the reasoning process for each particular
value of the target (setting other values as negative). When
all hypotheses for the targets have been formed, we
estimate the resultant prediction accuracy and compare it
with the traditional (homology-based) techniques for
secondary structure predication. To draw the quantitative
comparison, we then change the prediction settings towards
the primary structure (amino acids) instead of the secondary
structure, using the same reasoning protocol.
To quantitatively evaluate how the recognition accuracy
can be increased by exploration of causal links by Jasmine,
we predict the whole immunoglobulin sequence, given its
few residues. In our evaluation, we follow the prediction
settings of the study [7] where certain correlations between
residues were discovered, required for such prediction.
Also, we draw the comparison with the baseline approach
of sequence homology computation.

Classification-based and homology-based approaches
have different methodologies to predict the unknown
sequence residues. The former initially determines the sta-
tus of belonging to a class (and subclass), and then enumer-
ates the possible residues as the attributes of the
determined class. The latter calculates the distances from
all available sequences and suggest the closest sequence
as a prediction.

The set of 500 sequences were used for training (building
classification patterns) and the set of 200 sequences were
used for evaluation of prediction accuracy in each recogni-
tion settings (Table 2). Values in the table are the times the
predictions are better than a random prediction for the
totality of the residues that are the subject of the predic-
tion. Using hierarchical classification presented in [7]
improves the homology-based prediction by 175.2%. Use
of Jasmine to optimize the classification-based prediction
delivers a further 16.5% improvement.

These 16.5% of improvement is due to the fact that a
higher number of correlation rules (between the features
and targets) have been revealed as a result of the hybrid
reasoning process, than as a result of the manually built
classification graph [7]. Only simpler and incomplete ver-
sions of derived rules such as presented at the bottom of
Fig. 4 can be obtained via the manual analysis of clustered
(and possibly visualized) data. In particular, the manual
analysis derived a simpler version of the rule cb5(O):-

e3(O), f1(O), cc4(O), which delivered a number
false-positive prediction due to its weakness (a lesser num-
ber of constraints). On the other hand, homology-based
approaches do not results in explicit rules for individual
amino acids at all.

Hence the statistical-based homology method, which is a
traditional one for relating a protein sequence to a protein
family [19,23,46,47], can be significantly improved by an
automated procedure for finding rules for occurrences of
certain residues.
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6. Mining the evolutionary data

Prediction of the protein function has been one of
the most important tasks over the last two decades.
The functional prediction is traditionally based on
the observation that, two homologous proteins evolved
from a common ancestral protein, are expected to
have similar functions. Sequence similarity is the basis
for a vast number of computational tools to derive
protein homology. Recent approaches have attempted
to combine the sequence information with evolutionary
data [4,13,27,28]. Some approaches of comparative
genomics have extended the homology method by
identifying inter-connected proteins which participate
in a common structural complex or certain metabolic
pathways, or fuse into a single gene in some genomes.
Prediction of gene functions was found to be a good
application area for Inductive Logic Programming
[10,11,20].

The phylogenetic profile of a protein is represented as
a vector, with each component corresponding to a spe-
cific genome [14,15]. A component is equal to one if
there is a significant homology with that protein in
the corresponding genome, and equal to zero if it is
not the case.

Considering the spectrum of problems targeting the pre-
diction of protein functions, we focus on the following
problem: how the phylogenetic patterns for different spe-
cies are correlated with each other. This problem is tightly
connected with finding the scenarios of gene evolution, giv-
en the phylogenetic tree for the species [17]. In this section,
we apply Jasmine to the database of Clusters of Ortholo-
gous Groups of proteins (COGs), which represents a phy-
logenetic classification of the proteins encoded in
complete genomes [25]. Discovering the structure of how
phylogenetic profiles are interconnected, we will be
addressing the dual problem of how the binary vectors of
distribution of COGs through species are correlated. The
dataset consists of the matrix of 66 (species) by 4874
(clusters of proteins). The objective of this section is to
attempt to explore an alternative approach to building
evolutionary tree.

The way we explore the evolutionary data is based on
expressing correlations between objects or sets of objects
using causal links. A pair of objects (or object sets) is
causally linked if certain observations about the first
object (or set) imply certain observations about the sec-
ond object (this implication is based on Jasmine’s reason-
ing schema). The problem of finding correlation in a
dataset is then formulated as finding the causal links
between components of this dataset and characterizing
them via the overall structure of such links. In this sec-
tion we explore how these links can express evolutionary
relationships.

Hence we explore the following cases of causal links (the
third case is the combination of the first and the second
cases):
Case (1). Whether for a given COG its existence in cer-
tain species may provide an evidence (imply, be causally
linked) to the existence of this COG in the specified set
of selected species. Here species are features and COGs
are objects (#features << #objects).
Case (2). Whether for a given species occurrence of cer-
tain COGs in this species implies the occurrence of the
other selected COG in this species. In this case COGs
are features and species are objects.
Case (3). Whether a set of occurrences of given COGs in
a given set of species implies the occurrence of the par-
ticular COG in the particular species. Either feature–ob-

ject assignments above are possible, and the variables
need to range over sets of COGs or species respectively;
also, facts need to be augmented by clauses.

For the sake of simplicity in our examples, we use unary
predicates, however, arbitrary terms can be used. For
instance, if protein sequence information for COGs is tak-
en into account, the expression for a feature of object will
look like:

a3ðo7; sequenceðo7; cogRepresentativeÞÞinstead of justa3ðo7Þ

The most efficient data mining occurs in an interac-
tive mode, when the current causal link exploration
results are visualized for a user, who then can plan
the further direction of exploration online. We have
selected a straightforward approach to data visualization
and display our matrix as a grid with columns for
selected COGs and rows for selected species (Fig. 6).
Having chosen a data fragment for a group of COGs
and species, it is possible to perform an analysis of
interconnection between phylogenetic profiles within
the selected dataset (which COGs and which species
data can deliver a correct prediction for a given COG
and a given species).

For any cell (a given COG and a given species), we can
verify whether it is consistent with a currently-selected
dataset or not: we can run a prediction of the cell (binary)
value, temporarily declaring it ‘‘unknown’’. In the Fig. 6
COGs are objects, and species are features of these objects
which either obey a selected feature for particular object or
do not obey it. The prediction protocol for a given cell is
presented in Fig. 6 in the sequence and is analogous to
our presentation of the Jasmine reasoning protocol in Sec-
tion 2.

The shown Jasmine setting targets the causal link of
Case (1) above; if the matrix is transposed, causal link of
Case (2) would be a subject of Jasmine analysis. To
approach the causal link of Case (3) above, one needs to
analyze either (1) and use the generated hypotheses of (2)
in addition to the facts of (1), or the reverse. Overall, these
kinds of analyzes evaluate how strongly the distributions of
COGs for various species are correlated.

Naturally, for two parts of our dataset sets (sub-matri-
ces) S1 and S2, the higher the number (and accuracy) of



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Notes
a1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0
a2 1 0 0 0 0 1 0 ? 0 0 1 0 1 0 0
a3 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0
a4 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0
a5 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0
a6 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0
a7 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 Positive intersections [[a14(_),a23(_)],[a13(_),a23(_),a26(_)],[a13(_),
a8 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 Negative intersections [[a1(_),a6(_),a24(_)],[a1(_),a5(_),a6(_),a9(_),a2
a9 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 Unknown hypothesis [[a1(o22),a2(o22),a4(o22),a6(o22),a7(o22),a8(o
a10 1 0 0 0 0 1 1 1 0 0 1 0 0 1 0 Positive hypotheses [[a14(_),a23(_)],[a13(_),a23(_),a26(_)],[a13(_),
a11 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 Negative hypotheses [[a1(_),a6(_),a24(_)],[a1(_),a5(_),a6(_),a9(_),a2
a12 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 Inconsistent hypotheses [[a23(_2404)]]
a13 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 Background for positive h[[a13(o7),a14(o7),a23(o7),a26(o7)],[a1(o10),a6
a14 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 Background for negative hy [[a1(o1),a5(o1),a6(o1),a9(o1),a20(o1),a24(o1),a
a15 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 Background for inconsistent []
a16 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 Positive prediction []
a17 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 Negative prediction [[a1(o22),a2(o22),a4(o22),a6(o22),a7(o22),a8(o
a18 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 Inconsistent to predict []
a19 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 a lot of positive intersections but none predicted 
a20 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 5, 8, 9, 13, 25 low number of positive but well predicted
a21 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0many positive values but no predictions
a22 1 1 0 1 0 1 1 1 0 0 1 0 0 1 0all negative

Fig. 6. The fragment of the data set for analysis is: rows are species a1–a22 (features) and columns are COGs o1–o15 (objects). Note that a subset of
species and a subset of COGs are currently selected. The cell values indicate the existence of a given COG for a given animal. The user interface for Jasmine

is designed in a way that any cell value can be set as ‘‘unknown’’ and its prediction can be attempted. The right pane contains the reasoning protocol in the
same format to the one presented in Fig. 4.
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the obtained predictions of S1 given S2, or S2 given S1, the
stronger the correlation.

Fig. 6 gives an example of interactive exploration of cor-
relation between phylogenetic profiles using causal links.
For each species, a user attempts to verify whether the
occurrences of COGs can be predicted, given the selected
subset of the matrix.

The question mark indicates the current cell to be pre-
dicted; only one cell can be predicted at a time. In this
example, the prediction of a2(COG8) is attempted, since
the question mark is specified in the respective cell. The
prediction is 0 (no COG8 in species a2), and the ‘‘Negative
prediction’’ line on the right of Fig. 6 enumerates the
source of prediction: species a1 at COG o22, species a2
at COG22, etc. Hence, the prediction protocol on the right
corresponds to the Yes/No prediction for a given cell. In
the given setting, for each species, the user may specify
peculiarities of the causes for the COGs occurring in this
species in the fields on the right of the grid.

The prediction grid (area on the left) shows the results
of previous explorations. The prediction is successful for
the species a1, a3, a5, a8 . . . shown in bold in the
leftmost grayed column: cells with ones (shown in bold
as well) are predicted properly for COGs 5 and 6.
Consequently, there are causes for the existence of COGs
for these species (for a number of reasons which may
have a domain-specific biological interpretation). These
causes are read from the prediction protocol areas on
the right in the lines ‘‘Positive prediction’’, ‘‘Negative
prediction’’, and ‘‘Inconsistent prediction’’ (three lines at
the bottom). For our further analysis, we collect all
hypotheses for each species which provided the prediction
(Table 3).
Table 3 presents the features which have lead to the giv-
en goal concept (conditions for occurrences of COGs in
species). For each species (the left column), we perform
the prediction for the existence of each COG and collect
the hypotheses that deliver the correct positive prediction.
If the prediction is wrong, or there is a negative case, the
hypotheses are not taken into account. The right column
enumerates the COGs which substantiate the conditions
delivering positive correct prediction.

As an example of our analysis, we suggest the reader
observe that the species a3 and a5 imply the occurrence
of COGs in species a1. In the Fig. 6 there is the bold 1 in
the fifth column for data (COG 5, or o5). The occurrence
of COG 5 for species a1 is implied by the species a16 (refer
to Table 3, first row below the header, the right column).
The fact that the COG o9 occurs in a3 (in particular) is
written as [a3(o9),a5(o9),a6(o9),a8(o9)]; therefore, COG
o9 contributes to the causal link a3(o9) fi a1(o5). Finally,
notice the bi-directional node a3 M a1 (we have just veri-
fied this node in one direction).

Finally, the links between the species, showing how pre-
dictions have been made, are visualized as a graph (Fig. 7).

Each interrelationship between a pair of species is
obtained as a link between the occurrence of a particular
COG for the first species (and some other species) and
the occurrence of this COG in the second species. Each
edge can be one-directional or bi-directional. Nodes are
subscribed by the species numbers; they are in the one-to-
one correspondence to the evolutionary tree below (Fig. 8).

As a result, our Jasmine-assisted analysis suggested a
novel approach to represent evolutionary dependence
between biological species. In the traditional approach,
the evolutionary relations are inferred, based on the mea-



Table 3
Enumeration of all features which have lead to the given goal concept (prediction of the existence of a COG for a given species)

sp
ec

ie
s,

 a
1-

a8

Lists of conditions (sets of species) to infer 
that the given species occurs in a current 
COG. Only those conditions are selected 
which lead to proper predictions.

COGs that are present in the conditions (on 
the left). Occurrence of these cogs in the 
conditions (presented on the left) implies the 
occurrence of the selected (other) COGs for 
the species under investigation (leftmost 
columns).

a1
[[a3(_),a6(_)],[a3( _),a5(_),a6( _)],[a3(_) ,a5( _),a6(_),a8(_)],[
a3(_),a5(_) ,a8( _)]]

[a3(o9),a5(o9),a6(o9) ,a8(o9)], 
[a3(o20) ,a5(o20) ,a6(o20) ,a8(o20) ,a9(o20) ], 
[a3(o25) ,a5(o25) ,a8(o25) ,a14(o25) ,a15( o25) ,a21(o25)]

a2

a3 [[a1(_),a5(_),a6(_)],[a1(_),a5( _),a15(_),a21(_)]]
[a1(o9),a5(o9),a6(o9) ,a8(o9)], 
[a1(o20) ,a5(o20) ,a6(o20) ,a8(o20) ,a9(o20) ].

a4

a5

[[a1(_),a3(_),a6(_)],[a3(_)],[a3(_),a6(_) ,a8( _)],[a1(_),a3(_),
a6(_),a8(_) ],[a1(_),a3(_),a8(_)],[a3(_),a9(_) ],[a3(_),a6(_),a
8(_),a9(_)]] [[a1(_),a3(_),a6(_)],[a1(_),a3(_) ,a15( _),a21(_)]]

[a1(o20) ,a3(o20) ,a6(o20) ,a8(o20) ,a9(o20) ] 
[a1(o25) ,a3(o25) ,a14( o25) ,a15(o25),a21( o25)]

a6
a7

a8
[[a9(_)],[a3(_),a5(_),a6(_)],[a1(_),a3(_) ,a5( _),a6(_)],[a1(_),
a3(_),a5(_) ],[a3(_),a5(_),a6(_),a9( _)]] [[a1 (_),a3(_),a5(_)]] a1(o20),a3(o20),a5(o20) ,a6(o20) ,a9(o20) ]

a1 

a2 

a3
a7 

a8 

a9 

 a10 

a11 

a12 

 a13 

a14 

a15 

a16 

a17 a19 

a20 

a21 

a22 

a23 

a24 

a25 

a26 

a18 

a4
a6

a5

Fig. 7. The graph of causal links between species may serve as an alternative approach to building an evolutionary tree for species a1–a22 (corresponds to
the selection of species and of Fig. 6).
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surements of distance (difference) between the species
(expressed, for example, by distances between respective
protein sequences). Unlike the traditional approach, we
introduce the one where evolutionary relationships are of
the causal nature. These evolutionary relationships are
based on the revealed correlation that certain features of
species determine the goal concepts of other species. We
believe the proposed evolutionary approach better fits the



Fig. 8. The fragment of traditional evolutionary tree for 26 species.
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biological intuition behind the evolution process than a dis-
tance-based one (see e.g. [49]).

7. Related work

In this paper we presented the reasoning model and
implementation of a deterministic machine learning sys-
tem, Jasmine, and illustrated its capability by two prob-
lems in bioinformatics. In this section, we will draw the
comparison of the Jasmine reasoning strategy with other
inductive machine learning approaches, including analog-
ical reasoning. In addition, we will consider both Jasmine

limitations and advantages over statistical approaches,
and outline the bioinformatics-specific features of machine
learning.

Originally, the JSM-method was formulated in early
1980s in terms of a predicate logic, and is an extension of
the First-Order Predicate Logic with quantifiers over tuples
of variable length [5]. Jasmine complies with the common
paradigm of learning from positive and negative examples
[18]: given descriptions of positive and negative examples
relatively to a goal concept, positive hypotheses are
‘‘generalized descriptions’’ of a subset of positive examples
that do not ‘‘cover’’ any negative example. Generalization
of negative hypotheses is defined similarly. Jasmine is
designed as a logic program for convenient integration with
logical as well as knowledge representation formalisms
realized using logic programming [26]. A procedural rea-
soning system of the JSM type has been proved efficient
in bioinformatics [2], and Jasmine further leverages not
only JSM reasoning capabilities, but also the automated
adjustment to new domain and integration with other rea-
soning components inherent to logic programming.

As to the comparison with competitive approaches to
logic-based implementation of machine learning, it is worth
describing Inductive Logic Programming (ILP) mentioned
in the Section 1. In ILP (see, e.g., [20]) the idea of a version
space [18,31] is implemented by the use of the generality
relation (‘‘to be more general than, or to be equal to’’)
which operates on descriptions. Classifiers are considered
the inference relations in logic and the set of classifiers is
thought of as a subset of the set of logic programming for-
mulas. The major drawback of the version spaces, where
classifiers are defined syntactically, is that in the case of a
too restrictive choice involving purely conjunctive classifi-
ers, there is no classifier that matches all positive examples.
This situation which is referred to as ‘‘collapse of the ver-
sion space’’ is quite frequent, in particular, when classifiers
are conjunctions of attribute value assignments and ‘‘wild-
cards’’ are used for arbitrary values. If the expressive power
is increased syntactically, e.g., by introducing disjunction,
then the version space tends to become trivial, while the
most specific generalization of positive examples becomes
‘‘closer’’ to or just coincide with the set of positive
examples.

In contrast, the JSM-hypotheses, as has been proven in
[29], offer the methodology of ‘‘context-restricted’’ disjunc-
tion: not all disjunctions are possible, but only those com-
prising minimal hypotheses. As the origin of the generality
order can be arbitrary, in the JSM-method an analyst can
use descriptions of: positive and negative examples given
by formulas of description logic, by conceptual graphs,
etc; and only an initial generality relation has to be
specified.

Concurrently, the ILP methodology initially makes
over-generalized conjectures, which, are first refuted, and
then made more specific to cover only positive examples.
Quite the reverse to this methodology, the JSM-method
makes inductive ‘‘leaps’’ from the set of descriptions of
examples to the set of descriptions of their generalization;
the latter being ‘‘far apart’’ from the former.

Similarity in the JSM-method is not a relation, but an
operation, which is idempotent, commutative and associa-
tive (i.e., it induces a semi-lattice on descriptions and their
generalizations), a particular way of least general general-
ization of examples. JSM-method first constructs inductive
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generalization of positive examples, which may then be dis-
proved by negative examples. Symmetrically, negative
examples and their generalizations may be disproved by
positive examples.

Described in algebraic terms of Formal Concept Analy-
sis (FCA), the JSM-method allows for simple and efficient
implementation in procedural or declarative programming
languages (using standard algorithms for computing clo-
sure systems and concept lattices [32]). The issue of duality
between features and objects, illustrated in Section 5, is
thoroughly addressed by the FCA approach [3]; specifically
in Jasmine and how its (higher-order calculus) settings can
be reduced to FCA (propositional) approach, if all predi-
cates are unary and there are no explicitly specified links
between the involved features (clauses).

Traditional techniques for performing analogical rea-
soning require making a guess about what information
should be transferred from a previous analogous observa-
tion to a new situation. To avoid such guessing, the justi-

fied version of analogical reasoning attempts to map
inference rules from analogs to target objects, and such
inference rules might encode ‘‘causal relations’’. In this
respect, the closest classical system to Jasmine is ANAL-
OGY [45] of Winston and co-workers; it learns physical
descriptions of objects when given their functional or
attribute-based definitions as an input. ANALOGY trans-
forms an attribute-based definition (e.g. amino-acid prop-
erties in our case) into a higher level physical and
structural description (such as 3D structure in our case).
There are multiple ways of formalizing causality, explana-
tion and strength of evidence addressed in the computer
science literature; in this study, we use the precise and
very specific notion of causality relating it to Jasmine-spe-
cific inference.

Jasmine is not well-suited to handle large amounts of
data, because the number of hypotheses grows exponentially
with the number of examples. Focusing on flexibility, inter-
activity and expressiveness of a knowledge representation
language, Jasmine requires conventional means to reduce
the dimension of data such as clustering, filtering or other
pre-processing approaches. Therefore, the methodology of
mining large datasets for causal links with Jasmine is: to
apply pre-processing first, and then operate with the
reduced dataset, so that the results allow intuitive semantic
interpretations and can be supported by explanations
comprehensible by a human expert.

We proceed to the comparison of Jasmine-based analy-
sis with a generic statistical analysis (see [19] for introduc-
tion to recent approaches). Mining the evolutionary and
genomic data, the value of a statistical technique is that it
may shed a light on the most common principles of data
organization in biology [9]. Statistical approaches are usu-
ally less computationally intensive and less sensitive to
unreliable data. However, averaging may conceal the cor-
relation of higher consistency with a lower number of rep-
resentatives. To overcome this problem, a deterministic
approach like Jasmine can deliver simple rules with system-
atic exceptions instead.

Another disadvantage of using statistical approaches is
that it is possible to loose important information at the ini-
tial step so that it cannot be restored in successive steps.
Rather than considering evolutionary data as noisy, we
hypothesize that the data set is reliable and build complex
rules initially. Then, in contrast to the statistical approach,
we simplify the rule by explicit enumeration of exceptions,
which may form a basis of a more specific level of rules at
successive steps of data mining.

When we apply Jasmine to a large dataset, a statistical
approach may precede applying Jasmine. Hence, Jasmine

would be applied to a dataset where some information is
lost, and would reveal some correlations, and the selected
statistical approach would be applied again taking these
correlations into account. This process can be iterative.
After that, the obtained rules can be applied to an original
dataset, and some objects may be assigned the status of
exceptions. However, since the loss of information occurs
only for the sake of more efficient generation of the initial
version of rules, the results of such training strategy are
considered those obtained without loss of information. In
terms of our example with the prediction of the fragments
of immunoglobulin sequences, once we discover a correla-
tion between these fragments, we can drill down to the level
of individual amino acid and predict its occurrence with a
higher accuracy.

We conclude this section by focusing on the bioinfor-
matics-specific machine learning settings. There has always
been a debate in the bioinformatics community about the
role of approximation and explanation [41]. Some ‘‘black
box’’ machine learning approaches such as neural network,
genetic algorithms, and hidden Markov model only pro-
duce the result without any explanation from the learning
process. Although they produce a better result compared
to the rule-based inductive learning methods, their
approaches are hard to understand and interpret into use-
ful knowledge. As a result, interactive data exploration
requires various kinds of rule generators such as decision
trees to produce an explanation that is understandable by
humans, and also accomplished the task. To solve a partic-
ular prediction task, knowledge at a particular level may
remain implicit; however further domain exploration may
require returning to this intermediate step and re-applying
a rule-based method.

How can a bioinformatics domain be characterized in
terms of deficiencies of an initial domain theory? As we
have seen in our examples, it is:

• incomplete: domain theory does not necessarily relate
each object to a class.

• inconsistent because some objects are related to both
positive and negative classes.

• incorrect because not all predictions are biologically
plausible.
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• intractable because predictions with explanations for
some objects cannot be obtained within specified time/
space resources. Hence EBL has not found an extensive
number of applications in bioinformatics (see e.g. [38]).

• oversensitive to single examples and the requirement of
usable features (operation criterion) and goal concepts
to be deductively linked.

The protein-related example in the given paper shows
that an operation criterion cannot always be suggested,
because associative features may occur at distinct physical
levels (amino acids and 3D structure). Certain features of
Jasmine, including iterations of the prediction procedures,
integration with DeLP and a user interface which provides
flexibility for setting goal concepts, help to overcome the
problem of these deficiencies of an initial domain theory
or a lack of it.

8. Conclusions: main features and advantages of Jasmine

The main features of Jasmine are as follows (not all of
them have been demonstrated in the current paper due to
its brevity):

• Knowledge base for machine learning combines data
(facts) with rules (causal links between the data, clauses,
productions, default rules etc.);

• Convenient component–based integration to other units
implementing a specific approach to reasoning;

• Implements inductive, deductive, abductive and analog-
ical reasoning [1,5,26];

• Implemented as a logic program with full-scale meta-
programming extensions; meta-programming is intend-
ed to operate with domain-dependent predicates at a
higher level of abstraction;

• Builds rules and meta-rules, and explains how they were
built. Gives the cases (objects) which are similar to tar-
get case (to be predicted) and the cases which are differ-
ent from the target [2]. Also, Jasmine enumerates the
features of cases which separate similar and different
cases;

• Distinguishes typical and atypical rules, rules can be
defeated. Defeasible Logic Programming [42] is integrated
into Jasmine;

• Front end of Jasmine and its data exchange is compati-
ble with Microsoft Office.

In comparison with the implementations of JSM
approach which inspired Jasmine, the latter has the follow-
ing advantages:

1. Implementing JSM as a logic program, Jasmine can
derive facts from clauses in addition to operating
solely with facts. These clauses can bring in the rep-
resentation means of particular approach to logical
AI including situation calculus, default and defeasible
reasoning, temporal and spatial logics, reasoning
about mental attitudes and others. Jasmine uses facts
dynamically obtained by external reasoning machin-
ery, and at the same time Jasmine yields hypotheses
as clauses which are processed by accompanying
deductive systems. Therefore, deductive capabilities
of Jasmine are beyond the ones of JSM; in particular,
Jasmine is better suited for active learning (compare
with [19]).

2. Current implementations of JSM are procedural and
therefore strongly linked with domain specific features;
Jasmine is fully domain-independent. Ideology of JSM-
based analysis is strongly affected by its procedural
implementation. Taking advantage of the capability of
the extended logic program to update clauses on the
fly, Jasmine can operate with hypotheses and the initial
dataset with much higher flexibility than JSM. Using
GUI of Jasmine, it is easy to tackle an inverse prediction
problem.

3. The measure of likelihood of hypotheses generated by
JSM are rather limited. A single fact may prevent a
hypotheses to be generated which covers a large number
of samples. In contrast to JSM, Jasmine is capable of
optimizing the initial dataset, eliminating examples
which deliver atypical solutions. Following the method-
ology of case-based reasoning, Jasmine refines the initial
dataset of cases to adjust it to a given domain where pre-
diction is to be performed.

For Jasmine as a logic programming system, its perfor-
mance is a more critical issue than the size of a dataset,
which is set by the limitations of particular implementation
of Prolog (usually an order of a few gigabytes). When the
number of examples reaches thousand, using Jasmine in
the interactive mode becomes inconvenient.

In this paper we illustrated the data exploration strat-
egies where the importance flexibility of building deci-
sion rules precedes the speed of computation. The
dataset from the illustration examples are short not only
due to space limitation, but also because we intend to
demonstrate that the exploration initially starts with
aggregated data of rather low dimension. When a struc-
ture of rules obtained from a reduced or clustered data-
set becomes clear, the next step is to apply these rules
to the whole dataset (which might not be the task of
Jasmine). Hence the Jasmine’s performance is not a crit-
ical issue when Jasmine is used for initial high-level
mining for new rules. It is worth mentioning that Jas-

mine’s functionality is not limited to biological domains
[48].

In this paper we have demonstrated how a new method
of data analysis allows posing new kind of problems for
well-known data. Rather than evaluating Jasmine in stan-
dard settings, we show how the established domain in bio-
informatics can leverage Jasmine capabilities. We also
show how Jasmine assists in obtaining a clearer approach
to hierarchical classification of proteins and a novel way
to represent evolutionary relationships.
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Jasmine’s applicability to a wide spectrum of problems
in bioinformatics provided further evidence that some
aspects of scientific reasoning can be formalized and effi-
ciently automated. This suggests that a system like Jasmine

can be effective in a cost optimization of conducting exper-
imental observations. Our presentation of Jasmine reason-
ing in this paper is such that the code from Section 2, Fig. 5
and a domain-specific expression for similarity to be writ-
ten by the reader are sufficient for reasoning-intensive data
mining. A supporting page for using Jasmine in bioinfor-
matics is available [48].
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