
Discrete Applied Mathematics 142 (2004) 111–125
www.elsevier.com/locate/dam

Complexity of learning in concept lattices from positive and
negative examples

Sergei O. Kuznetsova;b

aAll-Russia Institute for Scienti�c and Technical Information (VINITI), Moscow 125219, Russia
bInstitut f"ur Algebra, Technische Universit"at Dresden, Germany

Received 20 November 2000; received in revised form 19 November 2003; accepted 24 November 2003

Abstract

A model of learning from positive and negative examples in concept lattices is considered. Lattice- and graph-theoretic
interpretations of learning concept-based classi0cation rules (called hypotheses) and classi0cation in this model are given.
The problems of counting all formal concepts, all hypotheses, and all minimal hypotheses are shown to be #P-complete.
NP-completeness of some decision problems related to learning and classi0cation in this setting is demonstrated and
several conditions of tractability of these problems are considered. Some useful particular cases where these problems can
be solved in polynomial time are indicated.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Many problems of data analysis are naturally formulated in terms of formal concept analysis (FCA) [7], e.g., the
notion of an implication between sets of attributes was considered already in the 0rst paper on FCA [25]. In this paper,
we consider a model of learning from positive and negative examples from [4,5], which was recently described in terms
of FCA [8,17]. Here, like in classical machine learning models [18], given a target property (attribute) and descriptions
of some positive and negative examples, generalizations of positive examples that do not cover any negative examples are
formed. These generalizations, called hypotheses, 1 can be used further for predicting the target attribute, i.e., classi0cation.

To construct all possible hypotheses we can adapt an algorithm for constructing concepts, e.g., from [19,6,3,20]. Some
algorithms for computing hypotheses and minimal hypotheses can be found in [14,8]. Thus, we do not present detailed
descriptions of any algorithm, but rather discuss tractability of some problems of hypotheses generation and classi0cation.

The paper is organized as follows. In Section 2, we recall the main de0nitions of FCA, give de0nitions of hypotheses
and classi0cations, and consider an example. In Sections 3 and 4, we consider lattice- and graph-theoretic interpretations
of hypotheses and classi0cations.

In Section 5, the algorithmic complexity of generating hypotheses and classi0cations is analyzed. We show that the
problems of determining the number of all concepts and the number of all minimal hypotheses are #P-complete. We
prove NP-completeness of some related decision problems for concepts and hypotheses with constraints on their sizes.
The complexity of classi0cation is discussed and its intractability in general case is shown. Some particular cases where
the above problems can be solved in polynomial time are considered.

E-mail address: serge@viniti.ru (S.O. Kuznetsov).
1 In [4] they were called JSM-hypotheses in honor of the English philosopher John Stuart Mill, who was one of the 0rst to formalize

inductive reasoning schemes.
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2. Main de�nitions: concepts, hypotheses, and classi�cations

First, we recall some basic notions of FCA [25,7].

De�nition 1. Let G and M be sets, called the set of objects and attributes, respectively. Let I be a relation I ⊆ G ×M
between objects and attributes: for g∈G; m∈M , gIm holds iH the object g has the attribute m. The triple K = (G;M; I)
is called a (formal) context. If A ⊆ G, B ⊆ M are arbitrary subsets, then the Galois connection is given by the following
derivation operators:

A′ := {m∈M |gIm for all g∈A};
B′ := {g∈G|gIm for all m∈B}:

The pair (A; B), where A ⊆ G, B ⊆ M , A′ = B, and B′ = A is called a (formal) concept (of the context K) with
extent A and intent B (in this case we have also A′′ = A and B′′ = B). The set of attributes B is implied by the set of
attributes D, or implication D → B holds, if all objects from G that have all attributes from the set D also have all
attributes from the set B, i.e., D′ ⊆ B′.

The operation (·)′′ is a closure operator [7], i.e., it is idempotent (X ′′′′ = X ′′), extensive (X ⊆ X ′′), and monotone
(X ⊆ Y ⇒ X ′′ ⊆ Y ′′). The set of all formal concepts of the context K , as any family of closed sets [1], forms a lattice,
called a concept lattice and usually denoted by B(K) in FCA literature. The meet and join of this lattice are given [7]
as

∧
j∈J

(Aj; Bj) =

(⋂
j∈J

Aj;

(⋃
j∈J

Bj

)′′)
;

∨
j∈J

(Aj; Bj) =

((⋃
j∈J

Aj

)′′

;
⋂
j∈J

Bj

)
:

Therefore, the order in the concept lattice is given as follows: if (A; B) and (C;D) are two concepts, (A; B)6 (C;D) iH
A ⊆ C (or, equivalently, B ⊇ D). Since an ordered set is naturally described by its (Hasse) diagram, called line diagram
in FCA, it is natural to say that (A; B) lies below (C;D) in the diagram or (C;D) lies above (A; B) in the diagram,
respectively.

Now, we present a learning model from [5] in terms of FCA. This model complies with the common paradigm of
learning from positive and negative examples (see, e.g., [17]): given positive and negative examples of a target attribute,
construct a generalization of the positive examples that would not cover any negative example.

Assume that there is a target property formally represented by attribute w diHerent from attributes from the set M . For
example, in some pharmacological applications the attributes from M may correspond to particular subgraphs of molecular
graphs of chemical compounds and the target property corresponds to a biological activity of these compounds.

In most settings, the target attribute may have three values: positive, negative, and undetermined. Input data for learning
can be represented by sets of positive, negative, and undetermined examples. Positive examples (or (+)-examples) are
objects that are known to have the target property and negative examples (or (−)-examples) are objects that are known not
to have this property. Undetermined examples (or (�)-examples) are those that are neither known to have the property nor
known not to have the property. The results of learning are supposed to be rules used for the classi0cation of undetermined
examples (or forecast of the target property for these examples).

In terms of FCA, this situation can be described by three contexts: a positive context K+ = (G+; M; I+), a negative
context K− = (G−; M; I−), and an undetermined context K� = (G�;M; I�). Here G+; G−, and G� are sets of positive,
negative, and undetermined examples, respectively; M is a set of attributes not containing the target attribute; I� ⊆
G� ×M; �∈{+;−; �} are relations that specify the structural attributes of positive, negative, and undetermined examples,
respectively. The derivation operators in these three contexts are denoted by superscripts +;−; �, respectively, e.g., one
can write A+, A++, A−, A��, etc., where A�� denotes the double application of the derivation operator (·)�.

Now, a positive hypothesis by Finn [4,5] (called “counterexample forbidding hypothesis” there) can be de0ned in the
following way.

De�nition 2. Consider a positive context K+ = (G+, M; I+), a negative context K− = (G−, M; I−), and an undetermined
context K�=(G�;M; I�). The context K±=(G+∪G−; M∪{w}; I+∪I−∪G+×{w}) is called a learning context. The context
Kc =(G+∪G−∪G�;M ∪{w}; I+∪ I−∪ I�∪G+×{w}) is called a classi�cation context. The derivation operators in these
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two contexts are denoted by superscripts ± and c, respectively. If a pair (A+; B+) is a concept of the context K+, then it
is called a positive (or (+)-) concept and the sets A+ and B+ are called positive (or (+)-) intent and extent, respectively.
If the intent B+ of a positive concept (A+; B+) is not contained in the intent of any negative example (i.e., ∀g− ∈G−,
B+ * {g−}−), then it is called a positive (or (+)−) hypothesis with respect to the property w. 2 A (+)-intent B+ is
called falsi�ed if B+ ⊆ {g−}− for some negative example g−. Negative (or (−)-) intents and hypotheses are de0ned
similarly. The derivation operators in these contexts are denoted by superscripts ±; c, respectively, e.g., one can write A±,
Ac, A±±, Acc, etc.

Obviously, if H+ is a positive hypothesis with respect to the property w, then H+ → {w} is an implication for the
context K±.

Hypotheses can be used for the classi0cation of undetermined examples from G� (i.e., for forecasting whether they have
the property w or not). If an undetermined example g� ∈G� contains a positive hypothesis H+ (i.e., {g�}� ⊇ H+), we
say that H+ is for the positive classi�cation of g�. A hypothesis for the negative classi�cation of g� is de0ned similarly.
If there is a hypothesis for the positive classi0cation of g� and no hypothesis for negative classi0cation of g�, then g�

is classi�ed positively. 3 Negative classi�cations are de0ned dually. If {g�}� does not contain any negative or positive
hypothesis, then no classi0cation is made. If {g�}� contains both positive and negative hypotheses, then the classi0cation
is said to be contradictory.

We can distinguish a useful subset of hypotheses that is equivalent to the set of all hypotheses w.r.t. possible classi0-
cations. Formally, a positive hypothesis H+ is a minimal positive hypothesis if no H ⊂ H+ is a positive hypothesis. The
set of all minimal hypotheses plays here a role similar to that of the basis of implications in FCA [10,7].

Example 1. In [8], we considered a context with winter wheel chains, which was adapted from the ADAC Magazine
(1999, no. 11). Here, we analyze a somewhat simpli0ed version of this context, with a subset of the set of initial
examples (seven examples—four positive and three negative—instead of 17) and simpler scaling of attributes. The target
attribute here is the high price of a chain (thus, positive examples correspond to expensive chains and negative examples
correspond to cheap chains). The values of the attribute system give the type of a chain system: R—rope chain, S—steel
ring chain, Q—quick mounting chain. The mount attribute takes the values F and B to denote that a chain of a particular
type can be mounted either only on the front wheels or both on the front and rear wheels. Actually, to conform to the
de0nitions above, we should have introduced the attributes system R, system S, system Q instead of system, but for the
brevity sake we use attribute system as a shortcut, keeping in mind that this attribute is nominal, i.e., takes either the
value system R or the value system S or the value system Q. The same for mount, which actually should be replaced by
the attributes mount B, mount F. Various techniques of reducing many-valued attributes to binary ones, called scalings,
are found in [7].

The original values of other attributes were numerical. The attribute con corresponds to the average expert assessment of
the conveniency of a particular type of chain; the attributes snow and ice correspond to the average expert assessments of
the maneuverability of a car, with a particular kind of chain, on snow and ice, respectively; the attribute dur corresponds
to average expert assessments of the durability of a particular kind of chain; the attribute grade corresponds to average
expert assessment of the general quality of a particular chain type. In the original setting, smaller values of attributes
con, snow, ice, dur, and grade correspond to better assessments of the respective chain properties. In [8], we used some
scales to turn numerical values into Boolean. Here we use a simpler scaling: these attributes take the Boolean value true
(denoted by cross in the respective table entry) if the original values are less than some 0xed thresholds (for details see
[8]). The corresponding positive and negative contexts can be represented as follows:

Positive context:

chain system mount con snow ice dur grade

2 S B × × × ×
5 Q B × × × ×
8 Q B × × ×
14 Q B × ×

2 In [4,5], it is required that |A+|¿ 2, however we omit this requirement here for the sake of uniformity.
3 In [4,5] g� is called a “(+)-hypothesis of the second kind.”
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Negative context:

chain system mount con snow ice dur grade

1 R F × × × × ×
3 R F × × × ×
17 R F ×

Here, the minimal positive hypothesis is {B; con; dur}. It is unique, since the intersection of all positive example intents
is nonempty and is not contained in the intent of any negative example.

Other positive hypotheses are

{Q;B; con; dur}; {B; con; dur; grade}:
These hypotheses can be useful if one is interested in the taxonomy of the class de0ned by the target attribute

(i.e., the class of expensive chains in our case). For example, the 0rst nonminimal hypothesis describes a class of
chains of the same type, same mounting possibilities, convenient, but with possible bad behavior on
snow.

The minimal negative hypothesis is {R;F}. It is also unique, since the intersection of all negative example intents is
nonempty and is not contained in the intent of any positive example.

Another negative hypothesis is

{R;F; con; snow; ice; grade}:
Note that there are subsets of the minimal positive hypothesis (such as {B; con}, {B; dur}, and {B}) that give smaller

suPcient conditions for the occurrence of the target attribute, but the minimal hypothesis gives more detailed description
of what is a “cheap chain” and what is an “expensive chain.” Generally, hypotheses take account of all attributes that
appear together with the target attribute to be meaningful and related to what can be considered as a “concept of the target
attribute.” Further discussion of the relation between minimal hypotheses and more general classi0ers (such as implications
based on pseudointents and minimal premises) can be found in [8].

3. Lattice-theoretic interpretation of hypotheses and classi�cations

In this section, we discuss hypotheses and classi0cations based on them from the lattice-theoretical viewpoint, using
the representation of a concept lattice by its line (Hasse) diagram.

Line diagrams of concept lattices provide a data analyst with a useful visualization of data structure. Besides the hierarchy
of concepts, which shows the trade-oH between sizes of intents and extents, implication between sets of attributes also
has a simple visual image [7]: if B→ D is an implication of a context K = (G;M; I) for B; D ⊆ M , then the meet (i.e.,
the result of applying the operation ∧ from De0nition 1) of all attribute concepts of the form ({b}′; {b}′′), where b∈B,
coincides with or lies below the meet of all attribute concepts of the form ({d}′; {d}′′), where d∈D. In this section, we
provide a means for similar visualization of hypotheses and classi0cations.

First, we consider positive hypotheses in terms of the lattice B(K+) of positive concepts. Each negative example cuts oH
some order 0lters from the lattice of positive concepts, these 0lters consisting of falsi0ed (+)-intents. Thus, the set of all
positive hypotheses, being the complementation of the set of falsi0ed (+)-intents w.r.t. the set of all (+)-intents, is a set
closed w.r.t. the meet operation of the lattice of positive concepts. Of course, the dual statement holds for (−)-hypotheses
in the lattice B(K−).

The situation looks diHerently in the concept lattice B(K±). We can distinguish three types of concepts of this lattice:
0rst, there are concepts of the form (A; B∪{w}), where B is an intent of K+, there are concepts of the form (A; B), where
B is an intent of K−, and there are concepts whose intents are intents of neither positive K+ nor negative K− contexts,
i.e., concepts (A; B) such that A = E+ ∪ E−, E+ ⊆ G+, E− ⊆ G−, B �= E+

+, B �= E−
− .

Proposition 1. A (+)-hypothesis corresponds to a concept of K± of the form (A; B∪{w}) such that there is no concept
of K± with intent B.

In fact, if such a concept exists, then there are examples that have all attributes from B, but do not have the attribute
w, which means that the positive intent B is contained in intent of at least one negative example. A (−)-hypothesis
corresponds to a concept of K± of the form (A; B), w �∈ B such that (B ∪ {w})± = ∅. This is equivalent to the fact that
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there is no concept of K± with nonempty extent and intent greater than or equal to B ∪ {w}, i.e., lying below than or
coinciding with ((B ∪ {w})±, (B ∪ {w})±±).

In the concept lattice of B(K±) the concepts corresponding to (+)- and (−)-hypotheses lie below concepts that are
not hypotheses. In terms of this lattice the problem of classifying an undetermined example g� ∈G� looks as follows.
Consider the order 0lter of B(K±) given by the largest subsets of {g�}� ∪ {w} that are intents of K±. If there is a
concept (A; B ∪ {w}) lying in this order 0lter such that w �∈ B and (B±; B) is not a concept of B(K±), then B is a
hypothesis for the positive classi0cation of g�. The absence of a hypothesis for the negative classi0cation of g� means that
for any concept (A; B) of B(K±) such that w �∈ B and (A; B) lies in the order 0lter of B(K±) given by largest subsets
of {g�}� ∪ {w} that are intents of K±, one has (B ∪ {w})′ �= ∅ or there is a concept with nonempty extent lying below
or coinciding with ((B ∪ {w})′; (B ∪ {w})′′).

Things look diHerent in the lattice of the classi0cation context Kc.

Proposition 2. Given a context Kc and an undetermined example g�, there is a positive hypothesis for the classi�cation
of g� i8 the following conditions hold for some A ⊆ G�, B; A�: A; B ⊆ M , g� ∈A� ⊆ G�:

1: (A; B ∪ {w})∈B(Kc);

2: (A ∪ A�; B)∈B(Kc):

Proof. For an undetermined example g� to be classi0ed positively, there should be a positive hypothesis B for this
classi0cation. This means, 0rst, that there exists a set of positive examples (we denote it by A) with the intersection of
intents in Kc equal to B ∪ {w}. Since intents of undetermined and negative examples do not contain w, the extent of the
concept of Kc with the intent B ∪ {w} is equal to A and the 0rst statement is proved.

Second, B should be contained in {g�}�. Since g� does not have w, this means that B is an intent of Kc and there is
some set A�: g� ∈A� ⊆ G� such that the extent corresponding to the intent B should contain positive examples from A
and undetermined examples from A�. It should not contain any negative examples, therefore, this extent is just the union
A ∪ A�.

Conversely, if conditions 1 and 2 hold for some A�: g� ∈A� ⊆ G�, then B is a hypothesis for the positive classi0cation
of g�.

Furthermore, there is no negative hypothesis for the negative classi0cation of g� ∈G� iH for any concept (C;D)∈B(Kc)
such that w �∈ D (the concept (C;D) does not lie in the order ideal of B(Kc) given by w) and D ⊆ {g�}c (the concept
(C;D) lies in the order 0lter of B(Kc) given by g�) either C ⊆ G� or C ∩ G+ �= ∅ holds (C lies in an order 0lter of
B(Kc) given by at least one positive example).

For contradictory classi0cation this condition is violated, whenever conditions from Proposition 2 always hold. For an
undetermined classi0cation both this condition and that of Proposition 2 are violated.

Thus, we obtained complete lattice characterizations of hypotheses and classi0cations.

4. Graph-theoretic interpretation of hypotheses

First, we introduce some auxiliary constructions. Recall that a vertex covering of a graph � = (V; E) is a subset of
vertices V1 ⊆ V such that for every edge (v1; v2)∈E we have v1 ∈V1 and/or v2 ∈V1.

De�nition 3. For an arbitrary graph � = (V; E) the associated tripartite graph is a graph T of the following form:
T = 〈W1∪W2∪W3; E1〉, |W1|= |W2|= |V |, |W3|= |E|, E1 ⊆ (W1×W2)∪ (W2×W3). Pairs of vertices of the form (w1

i ; w
2
i ),

w1
i ∈W1, w2

i ∈W2 are in one-to-one correspondence to vertices of the form vi ∈V ; (w1
i ; w

2
j )∈E1 iH i �= j. Vertices of the

form w3
l ∈W3 are in one-to-one correspondence to edges of the form el ∈E; (w2

j ; w
3
l )∈E1 if the vertex vj ∈V is incident

to the edge el ∈E.
We say that in a bipartite graph B = (X ∪ Y; Z) a set of nodes X1 ⊆ X dominates vertices from Y1 ⊆ Y if each vertex

from Y1 is adjacent to a vertex from X1. The common shadow of a vertex set X1 ⊆ X is de0ned as the set Y2 ⊆ Y of all
vertices adjacent to each vertex from the set X1.

We also need the notion of a biclique, which is de0ned diHerently in the literature. Here we consider a biclique
D = (X1 ∪ Y1; Z) in a bipartite graph B to be a complete bipartite subgraph of a graph (i.e., Z = X1 × Y1) maxi-
mal by inclusion, i.e., for any X2:X1 ⊂ X2 or any Y2:Y1 ⊂ Y2 neither the bipartite subgraph of B induced by ver-
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tices (X2; Y1) nor the bipartite subgraph of B induced by vertices (X1; Y2) is a complete bipartite
subgraph.

Lemma 3. Let � = (V; E) be a graph, and T be the associated tripartite graph. � has a vertex covering of size k if
and only if in the tripartite graph T there is a triple (C; Z;W3), where C ⊆ W1, Z ⊆ W2, Z is the common shadow of
the vertex set C in the bipartite graph induced by vertices W1 ∪W2, and Z dominates vertices from W3. Moreover, in
this case |C|= |W1| − k = |V | − k, and |Z |= k.

Proof. The proof follows directly from the construction of the graph T . Indeed, the set of vertices Z ⊆ W2 of size k
dominates all vertices from W3 if and only if it corresponds to a subset of vertices in graph � that makes a vertex
covering of size k. In this case for the bipartite subgraph of T induced by vertices W1 ∪W2 the set of vertices Z is the
common shadow of a set of nodes C ⊆ W1 that corresponds to a subset of vertices of graph � complementary to the set
of vertices that corresponds to the set Z . Therefore, |C|= |W1| − k = |V | − k.

De�nition 4. Learning context corresponding to a tripartite graph T :〈W1 ∪ W2 ∪ W3; E1〉, E1 ⊆ (W1 × W2) ∪ (W2 × W3)
is the context K±(T ) = (G+ ∪ G−; M ∪ {w}, I+ ∪ I− ∪ G+ × {w}), where M = W2, positive examples of the form
gi ∈G+ are in one-to-one correspondence with the vertices of the form wi ∈W1 and negative examples of the form
gl ∈G− are in one-to-one correspondence with vertices of the form w3

l ∈W3. We de0ne the relations I+ and I− by object
intents. For a positive example gi ∈G+{gi}+ := {w2|w2 ∈W2; (w1

i ; w
2)∈E1}. For a negative example gl ∈G−{gl}− =

{w2|w2 ∈W2; (w2; w3
l ) �∈ E1 for all w3

l ∈W3} (here superscripts + and − denote, as usual, derivation operators in the
corresponding contexts).

Lemma 4. Let T be a tripartite graph given by De�nition 4 and K±(T ) be the corresponding learning context. Then
the following two statements are equivalent:

1. There is a triple (C; Z;W3) of sets of vertices of graph T such that C ⊆ W1 and Z ⊆ W2 is a common shadow of
vertices from C, Z dominates all vertices from W3, and C is an inclusion-maximal set of the vertices whose common
shadow is Z .

2. Z is a positive hypothesis obtained for the learning context K±(T ) and C is the extent of the hypothesis Z.

Proof. ← If Z is a positive hypothesis, then it is the intent of a positive concept and, therefore, corresponds to a biclique
of the bipartite graph (W1 ∪W2; E1 ∩ (W1 ×W2)). Therefore, the extent C of the hypothesis corresponds to the common
shadow of the set of vertices that correspond to Z . Furthermore, since Z is not contained in intent of any negative example,
by the de0nition of the relation I− of the learning context corresponding to the tripartite graph T , the set of vertices
corresponding to Z dominates the set of vertices W3.
→ The intersection of all sets of the form {w2|(w1

i ; w
2)∈E1} for w1

i ∈C is the set {w2|w2 ∈ Z}, i.e., set Z , because
Z is the common shadow of vertices from C. On the other hand, among vertices from W1 there are no other vertices
adjacent to all vertices from Z because C is inclusion-maximal by the conditions of the Lemma. Thus, the pair 〈C; Z〉 is
a positive concept. Since Z dominates W3, for all w3

l ∈W3 there is some w2 ∈ Z ⊆ W2 such that (w2; w3
l )∈E1. Hence,

by the de0nition of the intent of a negative example from the graph T , for every negative example gl ∈G− there is an
element of Z that is not contained in the intent of {gl}− and, therefore, Z is not contained in any negative example.
Thus, Z is a positive hypothesis.

Obviously, the converse is also feasible: given a learning context K± = (G+ ∪G−; M ∪ {w}; I+ ∪ I− ∪G+ × {w}), one
can build a tripartite graph T = (W1 ∪ W2 ∪ W3; E1) such that vertices of the set W1 are in one-to-one correspondence
with (+)-examples, vertices of the set W3 are in one-to-one correspondence with (−)-examples, vertices of the set W2

are in one-to-one correspondence with elements of the set M , the subset of edges E1 ∩W1 ×W2 is given by the relation
I+ and the subset of edges E1 ∩W2 ×W3 is given by the complementation of the relation I−, i.e., by W2 ×W3 \ I−. A
positive hypothesis H+ of K± corresponds to a subset V2 ⊆ W2 that dominates all vertices of W3 and induces a biclique
on vertices W1 ∪W2 (i.e., the common shadow of V2 onto W1 is a set V1 ⊆ W1 and the common shadow of V1 onto W2

is V2 ⊆ W2).

Example 2. Consider graph T in Fig. 1. Here the corresponding learning context is given by that from Example 1.
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5. Complexity results about hypotheses

5.1. The number of hypotheses and minimal hypotheses

Several algorithms for computing the set of all concepts and the covering relation of its Hasse (line) diagram are known
in the literature, e.g., [18,6] (see [7,3,14,19]. All these algorithms are polynomial-delay [11]. Recall that an algorithm listing
a family of objects has a delay d if it satis0es the following conditions whenever it is run with an input of size p [11]:

1. It executes at most d(p) computation steps before either outputting the 0rst structure or halting;
2. After any output it executes at most d(p) computation steps before either outputting the next structure or halting.

An algorithm whose delay is bounded from above by a polynomial in the length of the input is called a polynomial delay
algorithm [11].

An experimental comparison of various algorithms can be found in a recent review [16]. To obtain an algorithm for
computing hypotheses or minimal hypotheses from any of the above algorithms one needs to add an additional command
for testing that the current intent of the positive context is not contained in the intent of any negative example.

The problem of counting the number of all concepts, given a formal context, is a long standing one. The knowledge
of this number can be useful for eHective resource allocation.

Obviously, for a context of the form K = (M;M; �=), which gives rise to a Boolean concept lattice, the number of
concepts is exponential. The following upper bound for the size of the set of all concepts of a context K = (G;M; I) was

proposed in [22]: |B(K)|6 3
2 × 2

√
|I|+1 − 1 for |I |¿ 2.

The problem of counting all formal concepts of a context is equivalent to the problem of counting all bicliques of a
bipartite graph. An upper bound on the number b of bicliques of a bipartite graph was proposed in [21]. For a bipartite
graph B = (X ∪ Y; E) with n vertices, i.e., |X | + |Y | = n, b6 2n=2. We can give the following very simple proof of this
statement in terms of FCA. Consider a formal context K =(G;M; I) (which is equivalent to the bipartite graph (G∪M; I)).
The number of concepts |B| can neither exceed the number of extents, which is not greater than 2|G|, no the number of
intents, which is not greater than 2|M |. Thus, |B|6 2min{|G|; |M |}, which is a better upper bound than that in [21], since
min{|G|; |M |}6 (|G|+ |M |)=2 = n=2, where n = |G|+ |M |.
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Now we show that the problem of counting all concepts of a formal context is intractable.

Theorem 5. The following problem “Number of all concepts” is #P-complete:

Input: Context K = (G;M; I).
Output: The number of all concepts of the context K , i.e., |B(K)|.

Proof. We shall reduce the following #P-complete problem to ours: “The number of binary vectors that satisfy monotone
2-CNF of the form C =

∧s
i=1(xi;1 ∨ xi;2)” [23]:

Input: Monotone (without negation) CNF with two variables in each disjunction C =
∧s

i=1(xi;1 ∨ xi;2), where xi;1,
xi;2 ∈X = {x1; : : : ; xn} for all i = 1; s.

Output: Number of binary n-vectors (corresponding to the values of variables) that satisfy CNF C.
First, we construct 2-DNF D, the negation of C: D =

∨s
i=1 ( Rxi;1 ∧ Rxi;2). We denote Di = ( Rxi;1 ∧ Rxi;2), i = 1; s. The set of

binary vectors that satisfy D is a union of the sets of binary vectors that satisfy some conjunction Di. Each disjunction
is satis0ed by every binary n-vector with n− 2 ones and two zeros in i1th and i2th components.

We reduce this problem to that of the number of concepts by constructing the following context K = (G;M; I). The
set of attributes is M = {m1; : : : ; mn}, where elements of M are in one-to-one correspondence with variables from X . For
every conjunction Di, i=1; s we construct a context Ki =(Gi;M; Ii), where the set of attributes is Mi =M \ {mi;1; mi;2} :=
{mi;1; : : : ; mi;n−2}, the set of objects is Gi = {g0

i ; g
1
i ; : : : ; g

n−2
i }, and the relation Ii ⊆ Mi × Gi is de0ned by object intents

as follows: {g0
i }′ = Mi; {gj

i}′ = Mi \ {mij} for j∈ 1; n− 2. Now the context K is de0ned as K = (∪̇s
i=1 Gi;M;∪s

i=1 Ii).
First, we show that every intent of K corresponds to an n-vector that satis0es D. Every intent of K is an intent of Ki

for some i, which can be not unique. Recall that for a set M a set Q of subsets of M is called a closure system if for
any X , Y ∈Q one has also (X ∩ Y )∈Q [1]. Note that for all i = 1; s the closure system of intents of the context Ki form
the power set of Mi, denoted by P(Mi). Elements of this set of attributes are in one-to-one correspondence with binary
n-vectors, where components are in one-to-one correspondence with elements of M with the same number. A vector of
this form satis0es Di, since it has zeros at i1th and i2th places. Therefore, this vector satis0es D.

It remains to show that binary n-vectors that satisfy D are in one-to-one correspondence with intents of K . In fact,
each binary n-vector v that satis0es D, satis0es Di for some i (this i may be not unique). Then this vector has zero i1th
and i2th positions. Therefore, the corresponding set of attributes A belongs to P(Mi), where Mi = M \ {mi;1; mi;2}. Since
P(Mi) is the closure system of intents of Ki for each i, there is a set of objects {gj;1

i : : : ; gj; r
i } ⊆ Gi, r6 n− 2 such that

{gj;1
i : : : ; gj; r

i }′ = A.
The one-to-one correspondence between the intents of K and binary n-vectors satisfying D is established. The intents

are in one-to-one correspondence with concepts. Thus, if we 0gured out the number of all concepts of K , we obtain the
number of all vectors satisfying D and, hence, that of the vectors satisfying C. The reduction is realized. The proof of
its polynomiality in the input size is obvious, since the context K has |M |= n attributes and |K |= s(n− 1) objects.

Corollary. The problem of counting all hypotheses of a learning context is #P-complete.
Moreover, the problem of counting all minimal hypotheses is also intractable.

Theorem 6. The following problem “the number of all hypotheses that are minimal by inclusion” is #P-complete:

Input: Learning context K±.
Output: The number of all minimal positive hypotheses, i.e., #{H+|H+ is a (+)-hypothesis of K± and any H such that

H ⊂ H+ is not a (+)-hypothesis.}

Proof. We reduce the following problem of determining the number of inclusion-minimal vertex coverings (shown to be
#P-complete in [23]) to our problem:

Input: Graph � = (V; E).
Output: #{W ⊆ V |[((u; v)∈E)→ (u∈A) ∨ (v∈A)] holds for A = W but not for any A ⊂ W}.
By construction of Lemma 3, an inclusion-minimal vertex covering in graph � corresponds to a triple (C; Z;W3) of

subsets of the vertices of the tripartite graph T associated with �, such that Z ⊆ W2 is the common shadow of C ⊆ W1

and C is the common shadow of Z . Moreover, Z is an inclusion-minimal set of vertices from W2 that dominates W3.
Conversely, each triple of this form corresponds to an inclusion-minimal vertex covering in graph �. By Lemma 4, triples
of this form are in one-to-one correspondence with positive hypotheses of a learning context corresponding to the tripartite
graph T . The inclusion-minimality of the set of vertices Z corresponds to the minimality of the hypothesis.
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The same result holds for negative hypotheses.
Theorem 6 also implies that problems of counting all hypotheses with inequality size constraints (such as |H+

+ |6 k,
|H+

+ | + |H+|¿ k) are #P-complete. Indeed, by putting k¿ |G| + |M |, we obtain the reduction. The #P-completeness of
counting problems with equality constraints, such as |H+

+ | = k, can be proved by summing over all possible values of
k : k = 1; : : : ; |G|.

5.2. Decision problems related to hypotheses with size constraints

Since the number of all hypotheses can be exponential in the size of the learning context K±, it is reasonable to
generate only some “good” hypotheses. A natural quality estimate of a positive hypothesis H+ is |H+

+ |, the size of the
corresponding extent, or the number of examples that “support” H+. This measure is typical in data analysis and machine
learning, see [17]. Another aspect of quality of H+ is the description size (“how detailed is a hypothesis”), i.e., |H+|.

In this section, we consider complexity of some decision problems for hypotheses with size constraints.

Proposition 7. The following “maximum-size hypothesis” problem can be solved in O(|M | · |G+| · |G−|) time.

Instance: Learning context K±, positive integer k.
Question: Does there exist a (+)-hypothesis H+ with extent H+

+ such that |H+|¿ k?

Proof. We consider intents of all positive examples and discard those that are contained in intent of a negative example.
For the resulting set of positive intents we test whether there are intents larger than k. If there are no such intents, then
there are no such intents at all, since we have considered the largest ones. The total worst-case time complexity in this
case is O(|M | · |G+| · |G−|). Since the largest intents correspond to the smallest extents, the same procedure gives an
answer to the question about the “|H+

+ |6 k” problem.
If we accept the restriction that a hypothesis H+ should have support not less than two (i.e., |H+

+ |¿ 2, see comments
to De0nition 2), than we consider not the intents of positive examples, but all possible pairwise intersections of them. In
this case the worst-case time complexity is O(|M | · |G+|2 · |G−|).

Corollary. The following “minimum-extent hypothesis” problem can be solved in O(|M | · |G+| · |G−|) time.

Instance: Learning context K±, positive integer k.
Question: Does there exist a (+)-hypothesis H+ with extent H+

+ such that |H+
+ |6 k?

Proof. The corollary follows from the fact that largest hypotheses have least extents.
Note that the algorithm in the proof of Theorem 7 also provides an answer to a more general question: “Does there

exist at least one hypothesis for a given learning context?” If every object intent of the positive context is contained in
a negative object intent, then every other intent is a fortiori contained in a negative object intent and, hence, there is no
positive hypothesis.

In [15], we proved that the problem of 0nding a formal concept (A; B) with |A|+ |B|6 k is NP-complete, which implies
NP-completeness of the problem of 0nding a hypothesis H+ with |H+|+ |H+

+ |6 k.

Theorem 8. The following “minimum-size hypothesis” problem is NP-complete:

Instance: Learning context K±, positive integer k.
Question: Does there exist a (+)-hypothesis H+ such that |H+|6 k?

Proof. The problem obviously belongs to the NP class. For each potential solution, i.e., a subset of attributes S ⊆ M ,
the closure S++ is compared with S. In the case of coincidence, it is tested whether S is not contained in any negative
intent and |S| is compared with k. All these operations can be performed within O(|M | · (|G+| + |G−|)) time. Now we
reduce the problem of minimal vertex covering from [9] to that of ours.

Instance: Graph � = (V; E), positive integer k6 |V |.
Question: Does there exist a set W ⊆ V such that |W |6 k and the relations “vi ∈W ” or “vj ∈W ” take place for an

arbitrary e = (vi; vj)∈E.
Applying De0nition 3, we construct a tripartite graph T associated with �. By Lemma 3, a vertex covering of size k

of graph � corresponds, in graph T , to a triple (C; Z;W ) such that |C|= |V | − k, |Z |= k, |W |= |E|; set Z is a common
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shadow of the set of vertices C and Z dominates the set W . By Lemma 4, this triple corresponds to a hypothesis with
intent of size k formed by |V | − k positive examples from the initial data corresponding to graph T by De0nition 3. The
reduction is realized within O(|V |2 + |E|) time.

Corollary. The following “maximum-extent hypothesis” problem is NP-complete:

Instance: Learning context K±, positive integer k.
Question: Does there exist a (+)-hypothesis H+ such that |H+

+ |¿ k?

Proof. The corollary follows from the fact that the largest extents correspond to the smallest intents.

Theorem 9. The following “largest hypothesis” problem is NP-complete:

Instance: Learning context K±, positive integer k.
Question: Does there exist a (+)-hypothesis H+ such that |H+

+ |+ |H+|¿ k?

Proof. By Lemma 4, this problem is equivalent to the following one:
Instance: Tripartite graph T1 = (V1 ∪ V2 ∪ V3; E), E ⊆ (V1 × V2) ∪ (V2 × V3), natural number k̂6 |V1|+ |V2|.
Question: Does there exist a biclique B1=(U1∪U2; U1×U2) of the graph T1 such that U1 ⊆ V1, U2 ⊆ V2, |U1|+|U2|¿ k̂,

and U2 dominates V3.
We reduce to this problem the problem of “minimal vertex covering” (see the proof of Theorem 8). From graph

� we construct an associated tripartite graph T = (W1 ∪ W2 ∪ W3; E). From T , we construct another tripartite graph
T1 = (V1 ∪ V2 ∪ V3; E1): E1 ⊆ (V1 × V2)∪ (V2 × V3), |V1|= n× |W1|, |V2|= |W2|, |V3|= |W3|, V1 = V 1

1 ∪ : : :∪ Vn
1 , where for

any i:16 i6 n|V i
1 | = |W1| and each subgraph induced by sets of vertices V i

1 , V2, and V3 is isomorphic to the graph T .
Thus, each biclique of the graph T induced by subsets of vertices W1 and W2 corresponds to n isomorphic copies of it,
which are bicliques of the graph T1.

We will show that there exists a vertex covering in � not greater than k (k6 |V |=n) if and only if the tripartite graph
T1 has a complete bipartite subgraph B=(U1 ∪U2; U1×U2) such that U1 ⊆ V1, U2 ⊆ V2, |U1|+ |U2|¿ k̂ = n · (n− k)+1,
and U2 dominates V3.

Indeed, suppose that the graph � has a vertex covering not greater than k. This implies that there is a biclique (U1∪U2,
U1×U2) of graph T1 such that U1 ⊆ V1, U2 ⊆ V2, 16 |U2|6 k, and U2 dominates V3. Here U1 is not less than n(n− k),
and |U1|+ |U2|¿ n(n− k) + 1.

Conversely, suppose that graph T1 contains biclique (U1 ∪ U2, U1 × U2) such that U1 ⊆ V1, U2 ⊆ V2, U2 dominates
V3, and |U1| + |U2|¿ k̂ = n(n − k) + 1. Since |U2|6 n, we have |U1|¿ n(n − k) − n + 1. This biclique of graph T1

corresponds in graph T to biclique B = (Y1 ∪ Y2; Y1 × Y2) such that Y1 ⊆ W1, Y2 ⊆ W2 and |Y1| = |Y2|=n. Therefore,
|Y1|¿ [(n · (n − k) − n + 1)=n] + 1¿n − k. By de0nition of graph T (De0nition 3) this means that |Y2|6 k and, by
Lemma 3, graph � has a vertex covering not greater than k.

Note that in case where G− = ∅, i.e., when there is no negative examples and the corresponding tripartite graph
turns into a bipartite, the previous problem can be solved in polynomial time with the use of the following ob-
servation. This observation uses a well-known correspondence between formal contexts and bipartite graphs, see
e.g., [3].

We represent the positive context K+ = (G+; M; I+) as a bipartite graph �B with sets of vertices G+ and M and edges
given by the relation I . Each concept (A; B) from B(K+) corresponds to a biclique of �B, and |A| + |B| is the number
of vertices of this subgraph. To 0nd a biclique of �B with |A| + |B|¿ k we use the following construction from [26].
Consider the context RK+ = (G+; M; RI+) with relation RI+ = G × M \ I+, the complement of I+, and the corresponding
bipartite graph �B. A concept (A; B) of B(K+) corresponds to an inclusion-maximal independent set of vertices of �B,
i.e., an inclusion-maximal set of vertices where no pair of vertices is connected by an edge. A concept (A; B) of B(K+)
with the largest |A|+ |B| corresponds to the largest (in the number of vertices) independent set of R�B. According to the
KVonig theorem (see, e.g., [24]), the number of vertices in the largest independent set is |V ( R�B)| − |M |, where |V ( R�B)|
is the number of vertices in R�B and M is the number of edges in the maximal matching of R�B. The size of a maximal
matching can be found by a polynomial-time algorithm, for example, by that from [12].

In the case where the intent size of positive examples is bounded by a constant k (i.e., |{g}+|6 k for all g∈G+) the
above-mentioned #P-complete and NP-complete problems concerning hypotheses become tractable. Indeed, in this case
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the number of all positive concepts is O(|M |k) and any of the algorithms mentioned above can generate all hypotheses in
time polynomial in |G+|, |G−|, and |M |. Due to the symmetry of objects and attributes, a similar condition |{m}+|6 k
for all m∈M is also suPcient for the polynomial tractability of the problems considered in this chapter.

6. Graph-theoretic interpretation of classi�cation

Since the number of all hypotheses and minimal hypotheses can be exponential in the size of the learning context,
it is reasonable to raise a question of the possibility of fast classi0cation of an object without generating all (minimal)
hypotheses. Here we propose a graph-theoretic interpretation of the classi0cation problem, which will be used further for
the study of the classi0cation complexity.

De�nition 5. “Problem of domination by parts of complete bipartite subgraph” (DPCBS):
Instance: Quadripartite graph Q = (V1 ∪ V2 ∪ V3 ∪ V4; E); E ⊆ (V1 × V2) ∪ (V2 × V3) ∪ (V3 × V4). The graphs B1; B2; B3

are subgraphs of the graph Q induced by the sets of vertices (V1 ∪ V2); (V2 ∪ V3); (V3 ∪ V4), respectively.
Question: Does there exist a complete bipartite subgraph 〈W2 ∪W3; W2 ×W3〉 of the graph B2 such that it is maximal

by inclusion, W2 ⊆ V2, W3 ⊆ V3, the set of vertices W2 dominates V1, and the set of vertices W3 dominates V4?

De�nition 6. The problem “hypothesis for a positive classi0cation (HFPC)” corresponding to a DPCBS problem is de0ned
as follows:

Instance: Classi0cation context Kc with a single undetermined example g� ∈G�, where M = (V1 ∪ V3), G+ =
{gi|i = 1; : : : ; |V2|}, G− = {fl|l = 1; : : : ; |V4|}. The relation I+ is given by object intents as follows: {gi}+ consists of
all vertices of V1 that are not adjacent to the vertex v2

i ∈V2 and all vertices from V3 that are adjacent to the vertex v2
i ∈V2.

The undetermined context is given by the one-element object set G� = {g�} and relation I� de0ned by {g�}� = V3. The
relation I− is de0ned by object intents as follows: {fl}− =V3 \ {w3

1 ; : : : ; w
3
q}, where {w3

1 ; : : : ; w
3
q} is the set of all vertices

from V3 adjacent to the vertex v4
l ∈V4.

Question: Does there exist a (+)-hypothesis H+ such that H+ ⊆ {g�}� = V3, i.e., is a hypothesis for the positive
classi0cation of g�?

Lemma 10. A DPCBS problem has a solution if and only if the corresponding HFPC problem has a solution.

Proof. (1) Let H+ be a (+)-hypothesis and H+ ⊆ {g�}�. In this case, in graph Q, the subgraph induced by the vertices
v2
i1 ; : : : ; v

2
in ∈V2 that correspond to the extent H+

+ and vertices from V3 that correspond to H+ is a biclique. The set of
vertices v2

i1 ; : : : ; v
2
in ∈V2 dominates V1. Indeed, let a vertex v1 ∈V1 be nonadjacent to any of the vertices from {v2

i1 ; : : : ; v
2
in}.

Then, by de0nition of (+)-examples, v1 ∈{g1}+; : : : ; v1 ∈{gn}+ and {g1}+∩ : : :∩{gn}+ �⊂ {g�}� (because v1 �∈ {g�}�). Let
H+ correspond to vertices w3

1 ; : : : ; w
3
|H+| in Q. Then, the set of vertices {w3

1 ; : : : ; w
3
|H+|} dominates the set V4. Suppose that

this is not the fact, and a vertex v4
j is not adjacent to any vertex from {w3

1 ; : : : ; w
3
|H+|}. Then by de0nition of (−)-examples,

for arbitrary (−)-example fj we have w3
1 ∈{fj}−; : : : ; w3

|H+| ∈{fj}− and H+ ⊆ {fj}−, which contradicts the fact that H+

is a hypothesis.
(2) Let W2 ⊆ V2, W3 ⊆ V3 be sets of graph vertices such that a bipartite graph induced by these vertices is a biclique,

the vertex set W2 dominates V1 and W3 dominates V4. By de0nition of (+)- and (−)-examples speci0ed by graph Q and
by Lemma 4, (W2; W3) corresponds to a (+)-hypothesis H+. The bipartite graph Bw induced by vertices W2 and W3 is
a biclique of the bipartite graph B2. Due to the domination of W2 over V1 and by the de0nition of the bipartite graph
B1, the graph Bw is also a biclique of the graph ((V1 ∪ V3) ∪ V2; E), where for v∈V1 ∪ V3, v2 ∈V2, one has (v; v2)∈E
iH a positive example corresponding to v2 has an attribute corresponding to v. Therefore, Bw corresponds to a positive
concept. It remains to demonstrate that its intent lies in the set {g�}� and is not contained in any negative object intent.
The former is true by the de0nition of (+)-examples corresponding to graph Q and due to the fact that W2 dominates
V1. Indeed, suppose that {g1; : : : ; gn}+ = H+ * {g�}�. Then, by de0nition of gi, it is possible to 0nd a vertex v∈V1 such
that v is not adjacent to any vertex from W2, which contradicts the fact that W2 dominates V1. The fact that the positive
concept (W2; W3) is a positive hypothesis follows directly from the de0nition of (−)-examples from the graph Q and the
fact that W3 dominates V4.

Example 3. Consider the problem of classi0cation of the �-example with intent {R;B; con; dur; snow; ice} for the learning
context given in Example 1.

The undetermined example is classi0ed positively, since the minimal positive hypothesis {B; con; dur} is contained in
{g�}� (note that the nonminimal hypotheses are not contained in it) and no negative hypothesis is contained in {g�}�. In
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terms of the corresponding quadripartite graph (Fig. 2), the set of vertices {2; 5; 8; 14} ∪ {B; con; dur} induces a complete
bipartite graph, the set of vertices {2; 5; 8; 14} dominates all the vertices from the 0rst part and the set of vertices
{B; con; dur} dominates all the vertices of the fourth part.

7. Complexity of classi�cation

Now, we discuss algorithmic complexity of classi0cation of objects from G�.
Recall that by De0nition 2 an object g� ∈G� is classi0ed positively if there exists a hypothesis for a positive classi0-

cation of this object and there are no hypothesis for its negative classi0cation. This de0nition can easily be implemented
as an algorithm: 0rst generate sets of (+)- and (−)-hypotheses, then test containment of the resulting hypotheses in
the object intent {g�}�. However, this realization has an obvious drawback: if the number of hypotheses is exponen-
tial with respect to the input size, then time and memory required for classi0cation of even a single object from G�

is also exponential. Can a classi0cation of a given undetermined example be realized without computing the set of
all hypotheses or without computing the set of all minimal hypotheses? This question corresponds to the following
problem:

Instance: A classi0cation context Kc and an undetermined example g� ∈G�.
Question: Is g� ∈G� classi0ed positively with respect to Kc?
The motivation of studying this problem becomes even stronger when we consider the case where G− =∅. Here positive

hypotheses are just positive concepts and minimal hypotheses are inclusion-minimal sets of the form {m}++ for m∈M .
Their generation is accomplished in O(|G+‖M |2) time. Testing the containment of attribute intents in {g�}� is done in
|M | time. If there is m∈M such that {m}++ ⊆ {g�}�, then classi0cation is realized. If not, then other positive intents
are also not contained in {g�}� and positive classi0cation is not possible. Thus, the classi0cation problem is solved in
O(|G+‖M |2) time even if the number of all hypotheses is exponential with respect to the input size.

We shall show that, for an arbitrary classi0cation context and an arbitrary undetermined example g� ∈G�, the decision
problem of the existence of a “(+)-hypothesis for a positive classi0cation of g�” is NP-complete. By the symmetry of
(−)- and (+)-hypotheses, this implies that the problem “whether there is no (−)-hypothesis for the negative classi0cation
of g�” is coNP-complete.

The equivalence established in Lemma 9 allows us to reformulate the classi0cation problem as a quadripartite graph
problem.

Theorem 11. The problem DPCBS is NP-complete.

Proof. Consider the following special case of the DPCBS problem. Let |V2| = |V3| = n; ∀i; j 1¡i; j¡n; for v2
j ∈V2,

v3
i ∈V3 one has (v2

i ; v
3
j )∈E if and only if i �= j, and let biparite subgraphs induced by sets of vertices V2 ∪ V1 and

V3 ∪ V4, i.e., B1 and B3, be isomorphic as unlabeled graphs (this isomorphism is given by the mapping that establishes
one-to-one correspondence between sets of vertices V2 and V3, V1 and V4, respectively). In this case, any biclique of
the bipartite graph B2 consists of graphs of the form ({v2

i1 ; : : : ; v
2
ik} ∪ {v3

j1 ; : : : ; v
3
jm}, {v2

i1 ; : : : ; v
2
ik} × {v3

j1 ; : : : ; v
3
jm}), where

{j1; : : : ; jm}= {1; : : : ; n} \ {i1; : : : ; ik}, i.e., the set of indices of vertices from V2 is complementary to the set of indices of
vertices from V3. Considering that bipartite graphs induced by vertex sets V2 and V1, V3 and V4, respectively, are isomorphic,
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this special case of the DPCBS problem is equivalent to the following “domination by mutually complementary sets of
vertices” (DMCSV) problem:

Instance: Bipartite graph B = (V1 ∪ V2; E), E ⊆ V1 × V2.
Question: Does there exist a set W1 ⊆ V1 such that both sets W1, V1 \W1 dominate V2?

Lemma 12. The DMCSV problem is NP-complete.

Proof. [13] We reduce the problem of CNF satis0ability to a DMCSV. The CNF satis0ability problem is stated as follows:
Instance: A CNF C = D1 ∧ · · · ∧ Dn, Di = (@)xi1 ∨ · · · ∨ (@)xik , where for arbitrary i; j xij ∈X = {x1; : : : ; xm}.
Question: Does there exist a Boolean vector (a1; : : : ; am) that satis0es C?
From the CNF C we construct the bipartite graph B = (V1 ∪ V2; E), E ⊆ V1 × V2, |V1|= 2m + 1, |V2|= n + m.
In vertex set V1 a vertex vi1 is in one-to-one correspondence with xi and a vertex vi2 is in one-to-one correspondence

with @xi and, besides these 2m vertices, there is an additional one, denoted by v2m+1. In the set of vertices V2 each
disjunction Dj is assigned to a vertex vj , 16 j6 n. Each variable xi is assigned to the vertex vn+i ∈V2, 16 i6m. The
pair of vertices (v1

i ; v
2
j ), where v1

i ∈V1, v2
j ∈V2, is connected by an edge if and only if one of the following cases takes

place:

(1) v1
i corresponds to the literal (@)xi1 that belongs to the disjunction Dj2 , which corresponds to the vertex v2

j ,
(2) v1

i corresponds to the literal (@)xi1 , and the vertex v2
j corresponds to the variable xi1 (i.e., j = n + i1),

(3) i = 2m + 1, 16 j6 n.

We shall show that a Boolean vector satisfying CNF C exists if and only if the graph B contains the vertex set W1 ⊂ V1

such that both sets W1 and V1 \W1 dominate V2, i.e., the corresponding DMCSV problem has a solution.
Indeed, let C be satis0ed by a vector (ai1 ; : : : ; ain), where elements ai1 ; : : : ; aik are ones and the other elements are zeros.

In this case all vertices from V2 are dominated by vertices from W1 ⊂ V1 that correspond to literals satis0ed by this
vector. Since the vertex v2m+1 is connected to all vertices from {v2

1; : : : ; v
2
n} and vertices v2

n+1; : : : ; v
2
n+m are dominated by

those vertices from V1 \W1 which correspond to other literals, therefore, (V1 \W1) also dominates V2.
Conversely, let a set W1 ⊆ V1 be such that W1 and V1 \W1 dominate V2. Suppose that one of these sets (e.g. V1 \W1)

contains the vertex v2m+1. The vertices corresponding to opposite literals can belong to either W1 or V1 \W1 (otherwise,
vertices vj , where n + 16 j6 n + m, that are connected with just a pair of vertices, are not dominated by W1 or by
(V1 \ W1)). Therefore, we can construct a Boolean vector by setting each literal that corresponds to a vertex belonging
to W1 be equal to one and assigning zero values to the remaining literals. The resulting vector satis0es CNF C. Indeed,
suppose that this is not so. In that case, there should be a nonsatis0ed disjunction D. However, the vertex corresponding
to this disjunction is dominated by a certain vertex from W1, and the literal corresponding to this vertex ought to be
nonzero, i.e., should satisfy D. We have proved the reduction. Its polynomiality and the membership of the problem in
NP are obvious.

Note that in the degenerate cases where

• V1 = ∅ (M = {g�}�)
• V4 = ∅ (G− = ∅, see the beginning of this subsection)

the quadripartite graph becomes tripartite and a polynomial algorithm for solving DPCBS problem exists. A polynomial
algorithm is also possible when the size of {g�}� is bounded from above by a constant. This assumption is well justi0ed
in various practical situations, for example, in the “structure—activity relationship” (SAR) problem (see, e.g., [2]), where
the target attribute w is a biological activity and classi0cation means forecasting the membership of a certain chemical
compound (represented by a set of attributes) in the class of active or inactive compounds. The size of a compound
description can be considered limited by a constant, at least when a sequence of classi0cations for a single compound
with growing sets of examples and attributes (i.e., elements of M) is considered. Another case where the possibility of
classi0cation is tested in polynomial time is the situation when the example being classi0ed is actually a (positive or
negative) example from the initial sample. This test of internal consistency of data proposed in [5] under the name of
“criterion of suPcient reason” is similar to cross-validation. This criterion requires that each positive example is classi0ed
positively by means of generated hypotheses and there is at least one positive hypothesis H+ for its (+)-classi0cation
support greater than one (i.e., |H+

+ |¿ 2). For an arbitrary positive example g+ this test can be realized as follows:
First we look for the intersections of intents of positive examples with {g+}+. If there is an example gi ∈G+ such that
{g+}+ ∩ {gi}+ * {g−}− for all g− ∈G−, then there is a hypothesis for the positive classi0cation of g+. If, on the
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Table 1

6 ¿

|H+| NP (Theorem 8) P (Proposition 7)
|H+

+ | P (Proposition 7) NP (Theorem 8)
|H+| + |H+

+ | NP (Theorem 9) NP (Theorem 9)

contrary, for every positive example gi ∈G+ we have {g+}+∩{gi}+ ⊆ {g−}− for some g− ∈G−, then no positive intent
contained in {g+}+ is a positive hypothesis. Hence, there is no hypothesis for the positive classi0cation of g+. The test
is realized in O(|G+| · |G−| · |M |) time.

An obvious algorithm for classi0cation of an undetermined example g� in the general case can be based on any
algorithm for constructing the set of all concepts. For testing if a current positive intent B+ is a hypothesis for the positive
classi0cation, one should additionally test noncontainment of B+ in any negative object intent and its containment in
{g�}� (i.e., the condition B+ ⊆ {g�}�). If one of these conditions is not satis0ed, B+ is not a positive hypothesis for the
classi0cation of g� and the next intent is considered. In the same way it is tested whether there is no negative hypothesis
against the positive classi0cation of g�.

Let Int denote the set of all intents (both positive and negative) contained in {g�}�. Then the complexity of such an
algorithm is either O(|Int|(|G+|+ |G−|)2 · |M |) or O(|Int|(|G+|+ |G−|) · |M |2), depending on the order in which intents are
generated (from largest to smallest or from smallest to largest, respectively). When the condition |{g�}�|6 c is satis0ed
for a constant c, we have |Int|6 2c and the algorithm runs in time polynomial in the input size.

8. Conclusion

We presented a model of learning from positive and negative examples and classi0cation based on FCA. We showed that
hypotheses correspond to certain subgraphs of tripartite graphs and hypotheses for classi0cation of an object correspond
to certain subgraphs of quadripartite graphs. At the same time hypotheses and classi0cations are naturally considered in
terms of order 0lters of concept lattices.

We showed #P-completeness of the problem of counting all concepts and all minimal hypotheses. We showed in-
tractability or polynomial solvability of some decision problems related to hypotheses with size constraints. These results
are summarized in Table 1. We also considered cases where generally NP-complete problems are polynomially solvable.
P denotes the existence of a polynomial algorithm for a particular problem, NP denotes NP-completeness of the problem.
For example, the upper left entry of the table means that the problem “Does there exist a hypothesis with |H+|6 k” is
NP-complete. Finally, we proved the intractability of the classi0cation problem and considered cases where this problem
can be solved in polynomial time.
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